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Abstract

We demonstrate that the spinning LQG black hole can act as a cosmic particle accelerator. The LQG

solution is singularity-free and can possess spin greater than that of a Kerr black hole. The additional

black hole hair, arising from quantum effects, significantly influences the particle dynamics around the black

hole. Under suitable physical conditions, the center-of-mass energy can grow arbitrarily high during the

collision of two generic particles in the spacetime of an extremal black hole. In the non-extremal case, there

exists a finite upper bound on the center-of-mass energy, the maximum value of which depends on the LQG

parameter. These results are particularly interesting from an astrophysical perspective, especially in the

context of probing Planck-scale physics.
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I. INTRODUCTION

Since their inception, black holes have been among the most intriguing objects in physics.

While the theoretical aspects of black holes have been extensively explored for a long time, the

observational confirmation and validation of these theoretical predictions have only been achieved

recently. The LIGO-Virgo-KAGRA collaboration’s detection of gravitational waves originating

from the collision of compact binary objects provided the first direct evidence for the existence of

black holes, opening a new field of research known as black hole spectroscopy [1–3]. Furthermore,

the Event Horizon Telescope (EHT) succeeded in imaging the shadow of a black hole, an achieve-

ment made possible through the observation of gravitational light bending and photon capture at

the event horizons of supermassive black holes in the center of the giant elliptical galaxy M87⋆ and

at the center of our galaxy, Sgr A⋆ [4–8]. Although these observations align with the predictions of

general relativity with remarkable precision, fundamental questions remain unresolved. One such

question pertains to the validity of the cosmic censorship conjecture, which says that spacetime

singularities are always hidden behind an event horizon, thereby preventing the existence of naked

singularities. In the context of black hole physics, these questions are of significant importance,

as black holes are strongly gravitating objects that may possess spacetime singularities at their

centers. However, the combination of gravity with quantum theory could potentially mitigate the

occurrence of curvature singularities in the Universe.

It is well known that Loop Quantum Gravity (LQG) is a candidate for quantum gravity, effec-

tively resolving singularity problems not only in black hole spacetimes [9–13] but also in cosmo-

logical models, particularly by eliminating the Big Bang singularity in Loop Quantum Cosmology

[14–16]. One of the most effective methods for addressing black hole singularities in LQG is phase

space quantization, or semi-classical polymerization, which preserves the inherent discreteness of

spacetime predicted by LQG [11–13]. In this context, various polymerization schemes have been

proposed, leading to different types of regular black hole spacetimes. In Ref. [17], it was shown

that using effective polymerization schemes, the interior of a D-dimensional spherically symmetric

black hole can evolve into a complete, regular, single-horizon spacetime where the classical sin-

gularity is replaced by a bounce. Furthermore, the semi-classical polymerization of the interior

of Schwarzschild black holes results in a non-singular, single-horizon black hole spacetime that is

asymptotically flat [17, 18].

Spinning black hole solutions are of significant interest because most astrophysical black holes

are characterized by definite angular momentum [8]. However, it should be noted that studies of

2



black hole singularities in LQG are mostly confined to spherically symmetric spacetimes due to their

relative simplicity. Nevertheless, a spinning LQG black hole solution was constructed in Ref. [19]

using a modified Newman-Janis algorithm. In addition to the conventional black hole parameters,

such as mass and angular momentum, the spinning LQG Kerr-like solution introduces an additional

parameter, ℓ, arising from quantum effects. It was shown that this additional parameter can be

constrained by studying the shadow cast by M87⋆ and Sgr A⋆ as observed by the Event Horizon

Telescope [20–22].

A notable feature of spinning black holes is the possibility of extracting mechanical energy from

them. The concept of extracting the rotational energy of a black hole, originally introduced by

Penrose, is known as the Penrose process [23]. In this process, under certain physical conditions,

a particle scattered by a black hole can emerge with more energy than it originally had, with

the extra energy derived from the spin of the black hole. This process is particularly efficient

in scenarios where two particles collide near the event horizon of the black hole, producing two

or more resultant particles. One of these particles may escape, carrying more energy than the

incoming ones; this phenomenon is referred to as the collisional Penrose process [24]. Interest in this

concept was rejuvenated with the introduction of the Bañados-Silk-West (BSW) mechanism [25].

This mechanism suggests that rotating black holes can function as natural particle accelerators,

potentially explaining highly energetic astrophysical phenomena such as active galactic nuclei,

gamma-ray bursts, and ultra-high-energy cosmic rays. The BSW mechanism significantly increases

the efficiency of energy extraction, potentially reaching energy levels on the order of Planck-scale

physics [26–29]. In the BSW mechanism, the center-of-mass energy of colliding particles can

become exceedingly high near the event horizon of an extremal black hole, particularly when one

particle has critical angular momentum. Due to its theoretical and observational importance, this

mechanism has been the subject of extensive research [30–54] (see Ref. [55] for a brief review).

This article focuses on investigating particle collisions near a spinning LQG black hole. The

main motivation for this study stems from the observation that this new solution enables the

black hole to possess a higher spin than Kerr and Kerr-Newman black holes, which may improve

the effectiveness of extracting rotational energy. Additionally, unlike the Kerr black hole, this

solution is singularity-free. It also introduces modifications to the horizon structure, where the

LQG parameter affects the size of the event horizon and the static limit surface. As we will

demonstrate, the LQG parameter has a significant impact on the BSW mechanism. The article

is organized as follows. In section II, we present the details of the black hole solution. In section

III, we study the particle motion in that black hole spacetime, followed by an analysis of particle
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collisions in section IV. We conclude the article in section V with results and discussions.

II. SPINNING LQG BLACK HOLE

In this section, we briefly present the details of the black hole spacetime. We consider the

solution obtained by the authors in Ref. [19], which describes LQG-inspired multihorizon rotating

black holes derived from a partially polymerized static spherically symmetric black hole solution

[17], using the Newman–Janis algorithm [56, 57]. The explicit form of the metric is given by

ds2 = −

(
1− 2M(r)

√
r2 + ℓ2

ρ2

)
dt2 +

ρ2

∆
dr2 + ρ2dθ2 − 4aM(r)

√
r2 + ℓ2 sin2 θ

ρ2
dtdφ+

A sin2 θ

ρ2
dφ2

(1)

where

M(r) = M − r −
√
r2 + ℓ2

2
, ρ2 = r2 + ℓ2 + a2 cos2 θ, (2)

∆ = r2 + ℓ2 + a2 − 2M(r)
√
r2 + ℓ2, A = (r2 + ℓ2 + a2)2 − a2∆sin2 θ. (3)

Here, M is the black hole mass, a is the black hole spin parameter, and ℓ is the polymer length

scale, a positive constant with a dimension of length. The metric is asymptotically flat as r → ∞.

Additionally, the black hole solution exists for all values of ℓ. Although the metric resembles the

well-known Kerr black hole solution, it captures important features of LQG, such as a transition

surface at the black hole center and the global regularity of spacetime. We present a brief overview

of the spacetime properties, focusing mainly on the horizon structure and ergoregion. For further

details on the spacetime structure, including the Penrose diagram, see Ref. [19]. Despite its

complex spacetime structure, the metric possesses notable limiting cases. In the limit ℓ → 0, we

recover the Kerr black hole spacetime; in the limit a → 0, we obtain spherical LQG black holes;

and when both a and ℓ vanish, we recover the Schwarzschild spacetime. Thus, the polymer length

scale ℓ is key to the rich spacetime structure.

The metric has divergences at ∆ = 0, indicating a coordinate singularity corresponding to the

black hole horizon. The location of this null surface is determined by the LQG parameter ℓ as well

as the conventional parameters a and M . The classical ring singularity of the Kerr black hole is

replaced by a timelike transition surface at r = 0 inside the event horizon. Another contrasting

feature to the Kerr spacetime is the multihorizon structure. The parameter space of ℓ and a

produces three distinct scenarios (excluding naked singularities): black holes with one (r1), two

(r1 > r2), or three horizons (r1 > r2 > r3), where these are the positive roots of the condition
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∆ = 0. Here, r1 ≡ rh is the event horizon, r2 ≡ rc, if it exists, is the Cauchy horizon, and r3

(conditionally present) is an additional horizon inside the Cauchy horizon. For fixed values of a

or ℓ, there exists a critical value of ℓ or a for which the Cauchy horizon and event horizon merge,

resulting in a maximally spinning black hole. This merging is characterized by the simultaneous

solution of the equations ∆ = 0 and ∆′ = 0

∆ = a2 +
√
ℓ2 + r2(r − 2M) = 0,

∆′ =
ℓ2 + 2r(r −M)√

ℓ2 + r2
= 0.

(4)

For a given ℓ, we can calculate the radius of the event horizon rhe and the spin ae of the extremal

black hole

rhe =
1

2

(√
M2 − 2ℓ2 +M

)
,

ae =
1

23/4

((
3M −

√
M2 − 2ℓ2

)√
M
(√

M2 − 2ℓ2 +M
)
+ ℓ2

)1/2

.

(5)

In the limit ℓ → 0, both ae and rhe become M , corresponding to the spin and event horizon radius

of an extremal Kerr black hole, respectively. Interestingly, in some cases (not necessarily extremal),

there exists a black hole solution with a/M > 1, which is constrained in the Kerr black hole case. It

was shown that the maximum rotation of Kerr black holes cannot reach M [58], but this constraint

is relaxed here.

Although black hole solutions may exist for arbitrary values of the parameter ℓ, extremal so-

lutions are guaranteed only within a specific range of ℓ values. In the range 0 ≤ ℓ ≤ 0.60057, the

scenario is analogous to Kerr spacetime, where one finds non-extremal black holes, extremal black

holes, and naked singularity solutions depending on the value of a. Specifically, for a given value of ℓ,

a non-extremal black hole becomes extremal when a = ae, and for a > ae, the solutions correspond

to naked singularities. The extremal solution at ℓ = 0.60057 represents an extremal black hole with

a null throat, characterized by (ae = 1.09596, ℓ = 0.60057). In the domain 0.60057 < ℓ ≤ 0.70711,

black hole solutions persist even for values of a slightly greater than ae, within a narrow region,

before they transition into naked singularities. The extremal black hole solution at ℓe = 0.70711,

called ultraextremal black hole, is characterized by (ae = 1.13975, ℓe = 0.70711). For ℓ > 0.70711,

extremal black hole solutions cease to exist (see Ref. [19] for more details on this). Since the center-

of-mass energy of colliding particles in the BSW mechanism increases indefinitely only in extremal

cases, we restrict our consideration of the LQG parameter ℓ to the domain 0 ≤ ℓ ≤ 0.70711.

The metric is stationary and axisymmetric with corresponding Killing vectors ta and φa. Recall

that a Killing horizon is a null surface whose null generators coincide with the orbits of a one-
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parameter group of isometries. A Killing vector field is normal to the Killing horizon. The rigidity

theorem states that the event horizon of a stationary black hole must be a Killing horizon [59].

Carter [60] showed that for a static black hole, the event horizon itself is a Killing horizon, whereas

for a stationary axisymmetric spacetime, there exists a Killing field ξa = ta + Ωφa normal to the

event horizon, where Ω is the angular velocity of the horizon. Since Carter’s theorem does not rely

on specific field equations, its applicability to the metric (1) is valid. The surface where gtt changes

sign is a Killing surface associated with the Killing vector ta, called the static limit surface. It

lies outside the event horizon and extends depending on the angular coordinate θ, in addition to

the black hole parameters. It coincides with the event horizon at the poles. The region between

this surface and the event horizon is called the ergoregion, where both the t and r coordinates

are timelike. The spacetime in this region is dragged along the rotational direction of the black

hole, known as the frame dragging effect, forcing any particle to move in this direction. However,

particles can escape from this region, as the static limit surface is not a no-return surface like the

event horizon.

An interesting phenomenon is that an ingoing particle can enter the static limit surface and

escape to infinity with more energy than it initially had, harnessing the black hole’s rotational

energy. This possibility makes a spinning black hole a potential source of high-energy astrophysical

phenomena such as gamma-ray bursts and active galactic nuclei. The volume of the ergoregion

is influenced by the LQG parameter ℓ, as both the ergoregion radius re and the event horizon

rh depend on it. We note that the extension of the ergosurface is 2M at the equatorial plane

for all values of ℓ, with variations due to ℓ appearing for other θ values, particularly significant

near the poles, as depicted in Fig. 1. The size of the ergoregion affects the rotational energy

extraction process, deviating from that of a Kerr black hole. Details of the horizon structure and

the ergoregion are presented in Table I. In summary, the inner horizon structure is not crucial

for investigating particle acceleration in the vicinity of the event horizon of the black hole. The

primary concern of this study is the size of the ergoregion, which is determined by the event horizon

and the static limit surface.

III. PARTICLE MOTION AROUND A SPINNING LQG BLACK HOLE

In this section, we study the particle motion around the rotating LQG black hole using Hamilton-

Jacobi theory. The Lagrangian of a particle in the geodesic path is given by

L = gµν ẋ
µẋν (6)
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θ = 0

θ = π

θ = π/2

(a)

re r3 r2 r1 = rh

θ = 0

θ = π

θ = π/2

(b)

` = 0.45 ` = 0.5 ` = 0.65

Figure 1: (a) The typical horizon structure of a spinning LQG black hole. Three generic horizons are

possible, marked as r1, r2, and r3, corresponding to the positive roots of ∆ = 0. The largest root, r1,

represents the event horizon. The cases with a single horizon and two horizons are discussed in the text.

The outermost surface in this figure denotes the static limit surface, re. (b) The variations of the event

horizon and static limit surface with the LQG parameter ℓ.

where the dot denotes differentiation with respect to an affine parameter λ. The parameter λ is

chosen such that τ = mλ, where τ is the proper time and m satisfies

gµν ẋ
µẋν = −m2. (7)

For neutral particles, the values of m2 are 1, 0, and −1 for timelike, null, and spacelike geodesics,

respectively. The conjugate four-momenta of the particle are given by

Pµ =
∂L
∂ẋµ

= gµν ẋ
ν . (8)

The Hamiltonian of the motion can be obtained using the Legendre transformation as follows,

H = Pµẋ
µ − L =

1

2
gµνPµPν . (9)

The action S for the particle is separable in the form

S =
1

2
m2λ− Et+ Lφ+ Sr(r) + Sθ(θ). (10)

Here, E and L are the conserved energy and angular momentum of the particle, respectively. In

fact, these quantities are associated with the symmetry of the system, namely the time translation
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ℓ a r1 ≡ rh r2 ≡ rc r3 re δ1 = rh − rc δ2 = rh−re

0

0.6 1.8 0.2 - 2 1.6 0.2

0.8 1.6 0.4 - 2 1.2 0.4

ae = 1 1 1 - 2 0 1

0.2

0.6 1.80137 - - 2 - 0.19863

0.63085 1.77750 0.02041 0.02041 2 1.75709 0.22250

0.631 1.77739 0.02669 0.01417 2 1.75069 0.22261

0.8 1.60408 0.32577 - 2 1.27831 0.39592

1.0 1.12432 0.83394 - 2 0.29038 0.87568

ae = 1.01005 0.97958 0.97958 - 2 0 1.02042

0.4

0.6 1.80530 - - 2 - 0.19470

0.8 1.61543 - - 2 - 0.38457

0.88492 1.49352 0.08768 0.08768 2 1.40584 0.50648

0.885 1.49339 0.09593 0.07951 2 1.13974 0.50661

1.0 1.22264 0.57898 - 2 0.64366 0.77736

ae = 1.04091 0.91231 0.91231 - 2 0 1.08769

0.6

0.6 1.81133 - - 2 - 0.18867

0.8 1.63191 - - 2 - 0.36809

1.0 1.30281 - - 2 - 0.69719

1.06645 1.07839 0.23542 0.23542 2 0.84297 0.92161

1.075 1.03177 0.41096 0.10033 2 0.62081 0.96822

ae = 1.09576 0.76457 0.76457 - 2 0 1.23543

0.60057

0.6 1.81136 - - 2 - 0.18864

0.8 1.63200 - - 2 - 0.36800

1.0 1.30317 - - 2 - 0.69683

ae = 1.09596 0.76393 0.76393 0 2 0 1.23607

0.70711

0.6 1.81519 - - 2 - 0.18481

0.8 1.64200 - - 2 - 0.35800

1.0 1.33994 - - 2 - 0.66006

ae = 1.13975 0.5 0.5 0.5 2 0 1.5

Table I: The horizon structure and static limit surface for the LQG rotating black hole for different values

of ℓ and a. The static limit surface is shown in the equatorial plane, where it has maximum extension.

and the rotational symmetry (and hence associated with the Killing vectors ta and φa). From

Hamilton-Jacobi theory, we know that the conjugate momentum is related to the Hamilton-Jacobi
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action by Pµ = ∂S
∂xµ . Therefore, we can write the conjugate momenta as

Pt = −E, Pφ = L, Pr =
∂S

∂r
, Pθ =

∂S

∂θ
. (11)

The Hamilton-Jacobi equation is given as follows,

H = −∂S

∂λ
. (12)

Substituting the value of the conjugate momenta and simplifying, we get(
∂S

∂θ

)2

+

(
aE sin θ − L

sin θ

)2

+m2a2 cos2 θ = −∆

(
∂S

∂r

)2

+
[(a2 + ℓ2 + r2)E − aL]2

∆
−m2(r2+ℓ2).

(13)

These equations are variable separable partial differential equations. Hence we can equate both

the left-hand side and right-hand side to a constant, say K, such that(
∂S

∂θ

)2

= K −
(
aE sin θ − L

sin θ

)2

−m2a2 cos2 θ, (14)

∆

(
∂S

∂r

)2

= −K +
[(a2 + ℓ2 + r2)E − aL]2

∆
−m2(r2 + ℓ2). (15)

Using (11) for Pr and Pθ, we obtain

dθ

dλ
= θ̇ = ±

√
Θ

ρ2
, (16)

dr

dλ
= ṙ = ±

√
R
ρ2

, (17)

where,

Θ = K − (L− aE)2 − cos2 θ

(
L2

sin2 θ
+ a2(m2 − E2)

)
, (18)

R(r) = P (r)2 −∆[(L− aE)2 +m2(r2 + ℓ2) +Q], (19)

P (r) = E(r2 + ℓ2 + a2)− La. (20)

In the above equations, the constant Q is the Carter constant, which is related to the separation

constant K as Q = K − (L − aE)2. Similarly, using (11) for Pt and Pφ, we obtain the Hamilton-

Jacobi equations as follows

−E = gttṫ+ gtφφ̇, (21)
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L = gφφφ̇+ gtφṫ. (22)

Simultaneously solving for ṫ and φ̇, we obtain

ṫ =
a(L− aE sin2 θ)

ρ2
+

r2 + ℓ2 + a2

ρ2∆
P (r), (23)

φ̇ =
(L− aE sin2 θ)

ρ2 sin2 θ
+

a

ρ2∆
P (r). (24)

Having obtained the equations of motion for particles around the black hole, we now focus on

particle collisions in the vicinity of the black hole horizon, specifically in the ergoregion. However,

not every particle heading toward the black hole will enter the ergoregion. Depending on their

angular momentum, some particles will get scattered, while others may move towards the event

horizon. The latter are the particles that participate in collisions. We will consider test particles

restricted to move on the equatorial plane, that is, θ = π/2. The equatorial plane is chosen

because it simplifies our equations since Carter’s constant Q reduces to zero on the equatorial

plane. Moreover, the ergoregion has maximum extension on the equatorial plane (see Fig. 1). To

find the range of angular momentum ℓ for which a particle will reach the event horizon, we consider

the radial motion of the particle, described by the equation

1

2

(
∂r

∂λ

)2

+ Veff = 0, (25)

where Veff is given by

Veff =
[E(a2 + r2 + ℓ2)− aL]2 −∆[m2(r2 + ℓ2) + (aE − L)2]

2(r2 + ℓ2)2
. (26)

The circular orbits are characterized by,

Veff = 0,
dVeff

dr
= 0. (27)

These two equations determine the maximum and minimum values of the angular momentum for

a circular orbit. We have tabulated the values for both the extremal and non-extremal cases in

Table II. The range of angular momentum can be calculated for both photons and massive particles.

Although photons have a broader range of angular momentum compared to massive particles, our

study concentrates on the collision of massive particles, specifically focusing on cold dark matter

particles [25].

Given that the geodesics are time-like for massive particles, ṫ ≥ 0, we have

a(L− aE sin2 θ)

ρ2
+

r2 + ℓ2 + a2

ρ2∆
P (r) ≥ 0. (28)
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l ae Lmin Lmax Lc a Lmin Lmax Lc

0 1 -4.82842 2 2 0.9 -4.75680 2.63245 3.19087

0.1 1.00250 -4.83196 2.00353 1.99998 0.9 -4.75862 2.64031 3.20911

0.2 1.01005 -4.84256 2.00218 1.99969 0.9 -4.76405 2.66334 3.26313

0.3 1.02277 -4.86024 2.00097 1.99832 0.9 -4.77306 2.70004 3.35108

0.4 1.04091 -4.88501 1.99761 1.99422 0.9 -4.78561 2.74842 3.47046

0.5 1.06493 -4.91700 1.98836 1.98382 0.9 -4.80163 2.80635 3.61872

0.60057 1.09596 -4.95681 1.96145 1.95755 0.9 -4.82115 2.87223 3.79462

0.70711 1.13975 -5.00927 1.81989 1.79779 0.9 -4.84545 2.94850 4.00818

Table II: Maximum Lmax and minimum Lmin angular momentum of massive particles approaching an ex-

tremal black hole (left panel) and a non-extremal black hole (right panel).

Taking the limiting case, setting θ = π/2 and re-arranging the equation, we get

L =

(
a2∆− (r2 + ℓ2 + a2)2

)
a(∆− (r2 + ℓ2 + a2))

E. (29)

In the limit r → rh, the equation reduces to

L =
r2h + ℓ2 + a2

a
E =

E

Ωh
≡ Lc (30)

where Ωh is the angular velocity of the black hole on the horizon,

Ωh =
a

r2h + a2 + ℓ2
, (31)

and Lc is the critical angular momentum of the particle. Particles that approach the black hole

with angular momentum exceeding the critical value will be scattered away before it reaches the

horizon. The particles with angular momentum within the range (Lmin, Lmax) will be absorbed by

the black hole. These behaviors of the particle motion can be easily understood by analyzing the

effective potential (Fig. 2 and Fig. 3). For all L < Lc, the effective potential is always negative,

resulting in bounded motion. However, for angular momentum greater than the critical value,

the particle encounters an effective potential barrier as it approaches the black hole, leading to

unbounded motion. This behavior remains consistent across all extremal black hole cases. In some

instances, potential bumps exist for L < Lc inside the horizon, but these do not influence the

particle motion outside the horizon.

IV. PARTICLE COLLISIONS NEAR THE BLACK HOLE HORIZON

In this section, we consider the collision of particles near the black hole horizon. We assume

that the particles are initially at rest at infinity, so that the collisional energy is solely due to
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Figure 2: (a) Effective potential for the ultraextremal black hole (ae = 1.13975, ℓe = 0.70711, rh = 0.5

and ℓ = 1.79778). (b) Effective potential for an extremal black hole with a null throat (ae = 1.09596,

ℓe = 0.60057, rh = 0.76393 and Lc = 1.95755).
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Figure 3: Effective potential for the extremal black holes. (a) ae = 1.01005, ℓ = 0.2, rh = 0.97958 and

Lc = 1.99968. (b) ae = 1.04091, ℓ = 0.4, rh = 0.91231 and Lc = 1.99421.

gravitational acceleration. The particles are assumed to have different angular momenta, where

the range is specified by Lmin and Lmax obtained in the previous section. We consider the particle

collision near the horizon at some radius r and then take the limiting case r → rh. For simplicity,

the particle collision is considered on the equatorial plane θ = π/2 (hence θ̇ = 0).

The expression for calculating the center-of-mass energy of a collision in curved spacetime can

be obtained as follows. When two particles collide, they occupy the same spacetime-point. An

observer in the center-of-mass frame is defined as having a four-velocity parallel to the sum of
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the four-momenta pµ1 and pµ2 of the particles. The energy measured by this observer is called the

center-of-mass energy, which is given by [55],

E2
CM = −gµν(p

µ
1 + pµ2 )(p

ν
1 + pν2). (32)

Substituting pµ = mẋµ, the above equation can be rewritten for two identical particles of mass m

as follows,

E2
CM = −m2gµν(ẋ

µ
1 + ẋµ2 )(ẋ

ν
1 + ẋν2). (33)

Using the normalization condition of the four-velocity uµ, uµuµ = −1, we obtain [25],

E2
CM

2m2
= (1− gµν ẋ

µ
1 ẋ

ν
2) . (34)

From the equations of motion derived in the previous section, the four-velocity of the particles can

be written as,

ẋµi =

(
a(Li − aEi)

r2 + ℓ2
+

r2 + ℓ2 + a2

(r2 + ℓ2)∆
P (r),

√
R

r2 + ℓ2
, 0,

(Li − aEi)

r2 + ℓ2
+

aP (r)

(r2 + ℓ2)∆

)
. (35)

Using this and substituting Ei = 1 in (34), we get,

Ξ ≡
E2

CM

2m2
=

(
a2 − aL1 + ℓ2 + r2

) (
a2 − aL2 + ℓ2 + r2

)
+∆

(
ℓ2 + r2 − (a− L1)(a− L2)

)
−X1X2

∆(ℓ2 + r2)
(36)

where,

Xi =

√
(a2 − aLi + ℓ2 + r2)2 −∆(m2(ℓ2 + r2) + (a− Li)2). (37)

The above equation remains unchanged if L1 and L2 are interchanged. This implies that the

center-of-mass energy ECM is invariant under the exchange of particles (since we consider identical

particles). We also note that the value of ECM deviates from the Kerr black hole case as it

depends on the LQG parameter ℓ, in addition to the black hole spin. This implies that the particle

acceleration in the LQG black hole background is influenced by ℓ. In Fig. 4, 5 and 6, we study

the behavior of ECM as a function of the radial coordinate r in the vicinity of the event horizon

rh, for extremal and non-extremal cases. The angular momenta of the particles are taken within

the allowed range Lmin and Lmax so that they always approach the event horizon. Only particles

possessing critical angular momentum can reach the horizon. However, it is important to note

that the critical angular momentum, determined by Eq. (30), falls outside the range (Lmin, Lmax)

for non-extremal black holes, but it is within this range for extremal black holes. Without loss of

generality, we set m = 1 in our analysis.
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Figure 4: (a) Center-of-mass energy for the ultraextremal black hole (ae = 1.13975 and ℓe = 0.70711). (b)

Center-of-mass energy for an extremal black hole with a null throat (ae = 1.09596 and ℓ = 0.60057).

For extremal black holes, as shown in Fig. 4 and 5, it is clear that the center-of-mass energy ECM

remains finite when the angular momenta of the incoming particles are below the critical value, and

it diverges when one of the particles has critical angular momentum. Although this result is similar

to that of the Kerr black hole, the extremal spin in the presence of the LQG parameter can exceed

the Kerr case, enhancing the potential to probe Planck-scale physics through particle acceleration.

However, it is important to note that the extremal case is an idealization, as it takes an infinite

amount of time for a particle to reach the horizon. Therefore, we expect that near-extremal cases

can act as realistic particle accelerators, even though the time required is very long. We investigate

the behavior of ECM for non-extremal black holes in Fig. 6, where it attains finite and sufficiently

high values at the horizon in all cases.

V. DISCUSSIONS

In this article, we have shown that a spinning LQG black hole can act as a particle accelerator.

Such a black hole solution is particularly interesting because quantum effects resolve the classical

singularity problem, and the limits on the spin of extremal black holes are more relaxed compared

to the Kerr black hole. The deviation in spacetime properties compared to the Kerr black hole,

including the multi-horizon structure, is induced by the LQG parameter ℓ. Although black hole

solutions can exist for all values of ℓ, extremal solutions are guaranteed only within a specific

parameter range ℓ ≤ ℓe. We have studied the horizon structure and ergoregion in the domain
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Figure 6: Center-of-mass energy for the non-extremal black hole. (a) a = 1 and ℓ = 0.2. (b) a = 1 and

ℓ = 0.4.

0 ≤ ℓ ≤ ℓe for both extremal and non-extremal cases, and observed that they are significantly

different from the Kerr spacetime. For a fixed value of ℓ, the extremal solution is characterized

by the corresponding extremal spin ae, which includes an ultraextremal black hole, defined by

(ae = 1.13975, ℓe = 0.70711), and an extremal black hole with a null throat, defined by (ae =

1.09596, ℓ = 0.60057).

Utilizing the BSW mechanism, we have explored the center-of-mass energy characteristics for

two particles colliding in the equatorial plane of a spinning LQG black hole. Astrophysical black

holes may be surrounded by relic cold dark matter density spikes, and it is widely recognized that
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cold dark matter does not interact electromagnetically with other forms of matter. Therefore, our

study focuses on the collision of two uncharged, massive particles. We analyze particle motion

by solving the geodesic equations, which allow us to determine the range of angular momentum

enabling a particle to reach the black hole. This range corresponds to the effective potential,

which either permits or restricts the particle’s approach. For particles within the allowed range, we

examine collisions near the black hole. Our findings indicate that when one of the particles possesses

critical angular momentum, the center-of-mass energy becomes exceedingly high in the spacetime

of an extremal black hole. Conversely, for non-extremal black holes, the center-of-mass energy

remains finite, even when the incoming particle has critical angular momentum. The behavior of

BSW mechanism is influenced by the LQG parameter ℓ, which also governs the horizon structure.

The observation that center-of-mass energy diverges during particle collision is particularly

intriguing from an astrophysical perspective. Supermassive black holes, such as those located at the

center of the giant elliptical galaxy M87⋆ and at the center of our galaxy, Sgr A⋆, might accelerate

particles through this mechanism, potentially linking it to the observed ultra-high-energy cosmic

rays, which can reach up to 1020 eV. These collisions could also produce exotic massive particles,

offering an avenue for further investigation in a realistic setting as an extension of our study.

Consequently, we believe that our research could be connected to observational phenomena aimed

at probing Planck-scale physics. A potential direction for future work involves calculating the

efficiency of energy extraction in the collisional Penrose process for spinning LQG black holes.
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