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Unpinning spiral wave anchored to two obstacles
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Abstract. Excitation waves in two-dimensional media form various travelling wave patterns such as spiral and
target waves. These waves can interact with heterogeneities in the tissue. Spiral waves can attach and form stable
pinned waves in heterogeneous excitable media. These spirals can be unpinned by delivering a carefully timed
electric stimulus, delivered very close to the core. We study the spiral wave unpinning when a wave is attached
to two obstacles at the same time. We show that the unpinning window decreases as the distance between the
obstacles increases, and beyond a critical distance, this window completely vanishes. Our study implies that the
distribution of heterogeneities can play a critical role in developing the low-energy defibrillation methods.
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1. Introduction

Rotating spiral waves are commonly found in physio-
logical and biological media like cardiac tissue [1],
human tongue [2], retinal tissues [3] and chemical
reactions like the Belousov–Zhabotinsky (B–Z) reac-
tion [4]. In the heart, rotating cardiac excitation wave is
known to cause a fatal cardiac arrhythmia like ventric-
ular tachycardia (VT) and ventricular fibrillation (VF).
During tachycardia, cardiac excitation rotates in the tis-
sue overriding the natural rhythm set by heart’s pace
making cells. During fibrillation, these rotating waves
break up and form multiple wavelets, leading to irreg-
ular electrocardiogram (ECG) patterns. The irregular
propagation of the excitation waves causes asynchro-
nous and irregular contraction of muscles in the heart.
VF is known to cause about 300,000 deaths every year
in the USA alone [1].

The dynamics of spiral waves can be understood by
studying a generic excitable medium. The elements of
the excitable medium respond to the external stimulus
with a characteristic excitation only when the stimu-
lus is above a certain threshold strength. The resulting
excitation can propagate through the medium, as in a
forest fire front, because of the diffusion-like coupling
between the excitable elements. After such a wave,
a second stimulus cannot initiate another excitation
for a certain duration, known as the refractory period.
Owing to this refractory period, travelling wave fronts
in excitable media annihilate each other when they

collide as they cannot excite the refractory tails behind
the colliding wave.

The most frequently used method to terminate ven-
tricular arrhythmia is via high-voltage defibrillation.
The high-voltage shock depolarizes the entire heart at
once for a short period of time, pushing it into a re-
fractory state and eliminating all the excitation at once.
This often leads to tissue damage like scars and lesions
in the heart tissue, which could become seed for further
episodes of arrhythmia. It is, therefore, essential to find
better low-energy methods to defibrillate the heart.

In a method called anti-tachycardia pacing (ATP),
the low-intensity pulses are given far away from the
spiral core. These pulses generate target waves emanat-
ing from the location of stimulus electrode. If the pac-
ing frequency is higher than the frequency of the spi-
ral, these target waves can push the spiral wave away
from the medium [5]. The success rate of ATP is found
to be 60–90% [6]. While they are able to remove the
rotating spirals freely, in heterogeneous medium, ex-
citation waves tend to form a stable rotating pattern
around a heterogeneity in the medium. This is known
as wave pinning. If not unpinned, these pinned spirals
can rotate indefinitely [7]. It is therefore imperative to
find optimal conditions and device efficient methods to
unpin them.

To unpin the spiral pinned to an obstacle, the stim-
ulus has to be applied in the refractory tail, close
to the core of the spiral wave [8, 9]. This narrow
time window, where the spiral unpins, is called the
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unpinning window of the spiral. The stimulus delivered
in this unpinning window will nucleate a wave, which
can travel only in the direction opposite to the spiral
due to the refractory property of the excitable media.
Eventually, the wave nucleated by the stimulus and the
spiral will collide head-on and annihilate each other,
unpinning the spiral. To get the stimulus delivered to
the core of the spiral wave, we use a technique called
far field pacing (FFP) [10]. When a low-voltage global
electric field is applied across a medium with obstacles,
depolarization and hyperpolarization regions form on
either side of the obstacles. These regions are called
Weidmann zones [6]. Above a threshold value of the
electric field, the depolarization region can nucleate an
excitation wave. A stimulus is delivered in such a way
that the wave it nucleates will fall into the unpinning
window can unpin the spiral wave.

Unpinning of a wave attached to a single obsta-
cle has been extensively studied using FFP by Takagi
et al. [11], Pumir et al. [12] and Bittihn et al. [13].
The unpinning success using the velocity restitution ef-
fects in detailed cardiac models is studied by Isomura
et al. [14]. The pinned spiral waves’ response to the
periodic stimuli is carried out in detail by Shajahan
et al. [9] and Behrend et al. [15], where an alternative
and robust approach to finding the pacing frequencies
for unpinning is discussed.

In this paper, we study the effect of the unpinning
window by introducing a second obstacle near the
central obstacle. We study the special case of unpin-
ning where the spiral tips are attached to both the ob-
stacles. By delivering the low-voltage stimulus at dif-
ferent phases of the spiral and systematically chang-
ing the distance between the two obstacles, we try to
understand the unpinning window of the two-obstacle
system.

2. Methods

All the simulations in this paper are carried out using
the Barkley [16] model, which is a modified Fitzhugh–
Nagumo type model proposed by Dwight Barkley to
simulate the cardiac action potential efficiently. The
model equations are as follows:

∂u
∂t
=

1
ε

u(1− u)

(
u − v + b

a

)
+D∇2u,

∂v
∂t
= u− v. (1)

Here, u represents the dimensionless transmembrane
potential whereas v stands for all the time-dependent
gating variables. For simplicity, in modelling, v is
assumed to be not to diffuse. The variable u is responsi-
ble for the excitation process and v is the slow inhi-
bitory variable, accountable for refractory period of
the medium following the excitation. The parameter ε

determines how fast u changes with respect to v. The
parameter a controls the width of the action potential
and b/a determines the threshold of excitation. The
parameters are set to a = 0.53, b = 0.05 and ε = 0.02
throughout the simulations.

The Barkley model equations are solved in a
300×300 computational grid using the forward Euler
method. A five-point stencil is used to compute the
Laplacian. Neumann boundary conditions are imple-
mented at the domain boundaries to ensure that no flux
escapes from the boundary. The computation is carried
out using a spatial resolution dx = 0.1 and the Euler
time step dt = 0.001. The accuracy of the Euler scheme
has been tested systematically for smaller spacial res-
olutions (dx = 0.05, 0.01) and the quantities such as
action potential duration and wavelength of the spiral
are found to agree with each other. The electric field is
applied using the no-flux boundary conditions [6], as
given below:

ŷ · (D∇u − �E) = 0, (2)

where ŷ is a unit vector perpendicular to the obstacle
boundary, D is the coupling constant and �E is the ap-
plied electric field. The Neumann boundary conditions
in eq. (2) can be implemented easily since the bound-
aries of the obstacle are parallel to the coordinate axis.
In simulations, we apply the electric field along the
y-axis. Then, eq. (2) becomes

D
∂u
∂y
= Ey. (3)

The strength of the electric field is set to �E = 3 units
and the pulse duration is set to 0.5 s. All the distances
are measured in terms of the wavelength (λ = 48) of
the spiral. The wavelength of the spiral is the number of
space steps between the wave front and the wave back.

3. Results and discussion

To study the unpinning in the presence of multiple
obstacles, we simulated a rotating wave attached to
two obstacles in a medium, as shown in figures 1a–d.
The wave rotates with a period of 10 s. In figure 1 the
obstacles are at a distance of 0.625λ apart. We define
the phase as the position of the spiral at the time of the
pulse in one complete spiral period. So Φ ∈ [0, 1].

To determine the unpinning window of the above-
mentioned spiral, we deliver a low-voltage electri-
cal stimulus along the negative y-axis (as shown in
figure 2a) at different phases of the spiral. After the ap-
plication of the electric field, the secondary waves are
nucleated at t = 3.5 s (figure 2b) due to the phenom-
enon of wave emission from heterogeneity (WEH) [8].
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Figure 1. Spiral wave with its tip attached to both the obsta-
cles. The obstacles are at a distance of 0.625λ apart, where
λ is the wavelength of the spiral wave. We treat this spiral
as our initial condition for all the simulations. (a) t = 2.8 s,
(b) t = 6.4 s, (c) t = 8.3 s and (d) t = 11.5 s.

Figure 2. Successful unpinning of the spiral wave attached
to both the obstacles. The FFP stimulus makes the obstacles
emit secondary excitations at t = 3.5 s. The tips of the sec-
ondary excitation and the spiral wave meet at t = 5.1 s which
result in their annihilation. The wave is unpinned and moves
away from the boundary, as shown at t = 6.4 s. (a) t = 2.4 s,
(b) t = 3.5 s, (c) t = 5.1 s and (d) t = 6.4 s.

The emitted wave will then successfully unpin the spi-
ral wave, as shown in figures 2c and d.

The unpinning shown in figure 2 is unique because
the secondary excitation is not nucleated in the refrac-
tory tail of the spiral. Instead, the secondary excitation
is nucleated from top of the two obstacles. After the
wave nucleation, there are four tips in total. The tips of
the secondary excitation close to the spiral tips will col-
lide and annihilate each other. The remaining two tips
of the secondary excitation will also collide with each
other at t = 5.1 s and move away from the obstacles,
unpinning the spiral.

The unpinning mechanism mentioned above happens
only in the small region in the phase window of the
spiral. We call it the unpinning window of the two-
obstacle system. But, if the spiral tips and the tips of the
secondary excitation do not meet exactly, then they do
not annihilate completely. This leaves a portion of the
wave, which later develops and ends up pinning to one
or either of the obstacles. The snapshots of failed un-
pinning due to the above-mentioned reason are shown
in figures 3a–d.

In figures 3e–h, we show another case where the spi-
ral fails to unpin from the obstacle. Here, the distance
between the obstacles is increased to 1.014λ. As the
distance between the obstacles increases, the tips gen-
erated from the secondary excitations will continue to
collide and annihilate with the tips of the spiral wave.
However, the tips of the secondary excitations will
have to move a larger distance before they collide and

Figure 3. Cases of unsuccessful unpinning. In figures
(a)–(d) the spiral tips on the left do not collide with each
other perfectly. Due to imperfect collision wave, which sur-
vives in the medium later, develops into a pinned spiral as
shown in figure (d). In figures (e)–(h) the distance between
the obstacles has been increased to 1.014λ. This allows the
secondary excitations from the obstacles to develop more
curvature which results in the incomplete unpinning. The
resulting wave will be attached to both the obstacles as shown
in figure (h). (a) t = 0.8 s, (b) t = 2.1 s, (c) t = 4.2 s and
(d) t = 8.8 s, (e) t = 2.2 s, (f) t = 3.9 s, (g) t = 5.6 s and
(h) t = 8.1 s.

annihilate. The increase in distance will give more time
to develop curvature, so that their tips do not coincide
with each other exactly. The wave left out due to in-
efficient collision will be developed into a new pinned
spiral wave, as shown in figure 3h.

The above-mentioned unpinning mechanism shows
that the spiral wave, which is attached to both the ob-
stacles, does not have a conventional unpinning win-
dow, but it does have an unpinning window of its own.
We plot a graph that indicates the unpinning window
as a function of distance between the obstacles corre-
sponding to the electric field stimulus being applied at
different phases of the spiral. From the graph, we see
that at lower distances between the obstacles, we
observe a large unpinning window. This success in
unpinning can be attributed to the mechanism explained
in figure 2. The unpinning window decreases as the dis-
tance between the obstacles increases (see figure 4).
This is because of the unsuccessful cases mentioned in
figure 3. After a certain distance d = 1.46λ the window
vanishes completely.

4. Conclusions

In this paper, we have discussed the wave unpinning
from two obstacles. We have shown that the chances
of unpinning, as quantified by the unpinning window,
decreases as the distance between the obstacles
increases. After a critical distance, unpinning fails
completely. Our results show that to unpin a spiral
anchored to both the obstacles, it is not essential for
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Figure 4. Unpinning window of the two-obstacle system.
White coloured grids indicate unpinning and black grids indi-
cate failed unpinning. Distance between the obstacles is mea-
sured in terms of spiral wavelength. The stimulus is given
for every 0.2 s for six different distances. From the graph, it
is clear that the unpinning window decreases as the distance
between the obstacles increases.

the stimulus, which is delivered, to fall into the refrac-
tory tail of the spiral. It is sufficient if the tips of the
secondary excitation will annihilate with the tips of the
spiral wave.

Our results will be relevant in deciding the
FFP-based methods for low-energy fibrillation. In
particular, the distribution of heterogeneities can play
a critical role in deciding the unpinning window. The
length of the unpinning window can be altered by the
presence of neighboring heterogeneities.
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