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Shreyas Punacha , Naveena Kumara A. , and T. K. Shajahan
Department of Physics, National Institute of Technology Karnataka Surathkal, Mangalore, Karnataka, 575025, India

(Received 20 March 2020; accepted 31 August 2020; published 21 September 2020)

Spiral waves of excitation are common in many physical, chemical, and biological systems. In physiological
systems like the heart, such waves can lead to cardiac arrhythmias and need to be eliminated. Spiral waves anchor
to heterogeneities in the excitable medium, and to eliminate them they need to be unpinned first. Several groups
focused on developing strategies to unpin such pinned waves using electric shocks, pulsed electric fields, and
recently, circularly polarized electric fields (CPEF). It was shown that in many situations, CPEF is more efficient
at unpinning the wave compared to other existing methods. Here, we study how the circularly polarized field acts
on the pinned spiral waves and unpins it. We show that the termination always happens within the first rotation
of the electric field. For a given obstacle size, there exists a threshold time period of the CPEF below which the
spiral can always be terminated. Our analytical formulation accurately predicts this threshold and explains the
absence of the traditional unpinning window with the CPEF. We hope our theoretical work will stimulate further
experimental studies about CPEF and low energy methods to eliminate spiral waves.
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I. INTRODUCTION

Spiral waves have been found in a variety of human organs
like the surface of the retina causing migraine [1], inside the
brain fostering epilepsy [2], and in the heart muscle leading
to fatal cardiac arrhythmias [3]. Spiral waves thrive in a class
of media whose individual components are interconnected by
diffusion-like coupling. In such a medium, a perturbation that
exceeds a threshold will induce an excitation wave, which
gets propagated among the individual components across the
medium. In many physiological tissues, such rotating waves
of activity are pathological, and in the heart, it leads to cardiac
rhythm disorders or even fatal conditions such as ventricular
fibrillation [4]. Thus in many situations, it is desirable to
remove such spiral waves from the medium. However, in het-
erogeneous media, rotating spiral waves tend to move towards
heterogeneities (henceforth called obstacles) in the medium
and rotate around the boundary of the obstacle as if the wave
is pinned to it.

Unpinning a pinned wave requires a careful stimulus given
close to the core of the pinned wave and within a short
time interval known as the unpinning window of the spiral
wave [5]. This is often not practical since there can be many
obstacles in a physiological tissue, which can pin the spiral.
Pumir and Krinsky [6] showed that if we apply an electric
field across the tissue, it can generate secondary excitations
from the boundary of the obstacles which can act as a local
stimulus close to the core of the pinned wave. This method,
known as far-field pacing (FFP), eliminates the problem of
locating the stimulus, instead it allows one to time these
field pulses so that the secondary excitations are within the
unpinning window of the wave [7,8]. This method was suc-
cessfully applied to control such waves in the heart during
fibrillation [9].

Jiang-Xing Chen et al. introduced the circularly polarized
electric field (CPEF) to study its influence on the drift of the
spiral waves [10]. Later, Feng et al. used it to terminate the
pinned spiral waves [11]. In a simulation study, they compared
the efficiency of the circularly polarized electric field to that
of the pulsed electric field and found a significant increase
in the success rate with much lower voltage strength than
pulsed electric fields. In the subsequent study, they showed
that the higher frequency circular wave trains generated by
the CPEF could successfully terminate spiral turbulence [12].
Recently, the effect of CPEF on an irregularly shaped obstacle
was also performed [13]. In addition to these studies, the
ability of CPEF to control the turbulence has been shown
experimentally in the Belousov-Zhabotinsky reaction [14].

In this article, we present a mechanism for unpinning the
spiral waves using CPEFs. We show that, for a given obstacle
size, there exists a time period of the CPEF below which
the spiral can always be unpinned. We call it the cutoff time
period. We also show that the termination always happens
within the first period of the CPEF. In the following sections,
first, we summarize the observations made in the simulations.
Later, based on these observations, we derive a robust and
generalized analytical formulation which explains the findings
of the simulations. Our theory accurately predicts the cutoff
time period of CPEF. In particular, we show that unpinning
is always successful if the period of the CPEF is below the
cutoff period. We also show that the cutoff period depends
linearly on the radius of the obstacle. We find that there is no
traditional unpinning window with the CPEF.

II. MATHEMATICAL MODEL

To simulate CPEF we use a generic model of excitation
waves, namely, the Fitzhugh-Nagumo equations. They are
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given by

∂u

∂t
= 1

ε
(u(1 − u)(u − a) − v) + D∇2u, (1)

∂v

∂t
= bu − v, (2)

where u is the transmembrane voltage and v is the slow vari-
able. The parameter ε is the ratio of timescales between u and
v and D is the diffusion coefficient. The equations are solved
using the forward Euler scheme in time and five-point finite
difference stencil on a two-dimensional (2D) square grid.
The domain boundaries are modelled using no-flux bound-
ary conditions. In monodomain models, an additional no-flux
boundary condition is applied on the boundary of the obstacle
to simulate the wave emission from heterogeneity. It is given
by [15–17],

n̂ · (D∇u − E ) = 0. (3)

Here E is the applied electric field. The boundary conditions
are imposed on the obstacle using the phase field method
[17,18]. This method substitutes Eq. (3) by evolving an aux-
iliary phase field which behaves like an order parameter
at the boundary of the obstacle. For E, we used an anti-
clockwise rotating CPEF of the form E = E0 sin(2πt/Tcp)x̂ +
E0 cos(2πt/Tcp)ŷ, where E0 is the strength of the field and Tcp

is its period.
The parameter values are chosen as a = 0.1, b = 0.25, ε =

0.025, D = 1, and E0 = 0.1. We used dimensionless space
step dx = 0.1 and time step dt = 0.0001. Spiral waves ro-
tating anticlockwise were initiated in the medium with their
tips pinned to the obstacles. Since we have the freedom of
applying the E field either in the clockwise or anticlockwise
direction, in this article, we consider anticlockwise rotating
spirals only (The case of the clockwise rotating spiral is in-
cluded in the Appendix). We define the phase difference α

as the angular difference between the spiral and the initial
direction of the E field. The waves were allowed to perform
at least four rotations before the delivery of the E field.

III. RESULTS AND DISCUSSION

A. Numerical studies of unpinning with circularly
polarized electric field

Figure 1 shows the unpinning of the anticlockwise rotating
spiral by a CPEF. The spiral is pinned to an obstacle of
fixed radius r = 4. The period of the spiral Ts around this
obstacle is 12.5. In Figs. 1(a) to 1(d), the CPEF having a
period Tcp = 10.4166 is used. Figure 1(a) shows the spiral
S with α = 0. When E field is applied, the wave emission
happens from those points on the obstacle boundary where the
field density is sufficient to nucleate a new wave. This gives
rise to symmetrical crescent-shaped depolarization, which can
be divided into head H and tail T . The head H follows the
electric field vector along the boundary of the obstacle. When
T collides with S, H lags behind S by a phase angle of φ.
Due to this, H continues to stay pinned to the obstacle. In
Figs. 1(e) and 1(f), the E field having a period Tcp = 3.6764
is used. Since the radius of the obstacle is fixed and Tcp is
shorter than in the case of Figs. 1(a) to 1(d), H moves faster
on the boundary and reaches the wave back of S when T and

FIG. 1. Unpinning of anticlockwise rotating spiral. The radius
of the obstacle (white circular patch), r = 4 and the phase differ-
ence α = 0. (a)–(d) Unsuccessful case, period of the CPEF Tcp =
10.4166. (a) An anticlockwise rotating pinned spiral wave S. (b) Ex-
citation is emitted from the obstacle. The leading end, labeled as
head H , follows the electric field. The trailing end is labeled as the
tail T . (c) T collides with S. The excitable gap φ > 0 (shaded in
green) between H and the wave back of S do not facilitate unpinning.
(e)–(h) Successful case. The electric field now has a smaller period
Tcp = 3.6764. (g) When T collides with S, H reaches the wave back
of S. The excitable gap is zero, and this leads to successful unpinning
(h). Notations: Magenta dashed arrows show the instantaneous direc-
tion and red circular arrows within the obstacle show the direction of
rotation of the electric field.

S collide. This makes the phase width φ = 0 and causes a
successful unpinning of the spiral.

Since we kept the radius of the obstacle and phase differ-
ence α fixed, if we keep on reducing the time period Tcp, we
must reach a point where the excitable gap φ = 0. This is the
cutoff time period T ∗

cp of the E field. Below this, φ is always
zero, and therefore there is always unpinning.

What happens if we continue to apply the E field in the
unsuccessful case of Figs. 1 (a) to 1(d)? Will the spiral unpin
if we apply multiple rotations of E field by keeping the value
of Tcp fixed? In Figs. 1(a) to 1(d) Tcp < Ts. So, the head H
is being dragged along by the electric field vector along the
boundary of the obstacle. Due to this, the tail of the elec-
tric field vector, around which, the wave nucleation happens,
always stays behind H [see Fig. 1(d)]. Since H leaves a
refractory tail behind it as it moves, the electric field is not
able to nucleate any waves there. So, when Tcp < Ts, applying
multiple rotations of the E field do not unpin the spiral wave.

The case with Tcp > Ts is shown in Fig. 2. Here, every time
the E field nucleates a new wave, the head H of the newly
nucleated wave moves with the same speed as that of the spiral
instead of the speed dictated by the applied E field. Since the
period of the E field is high compared to the period of the
spiral, the electric field keeps lagging behind the spiral. As
the E field lags and falls out of the refractory tail of H , it
nucleates a new wave there. Because all the pinned waves now
move with the same velocity on the boundary of the obstacle,
the head H of the newly nucleated wave cannot catch up with
the previous one. Therefore, the excitable gap φ can never
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FIG. 2. Unpinning failure when Tcp > Ts. The radius of the ob-
stacle is r = 4 and the phase difference α = 0. The period of the E
field is Tcp = 23.22 and the period of the spiral Ts = 12.5. Here, the
newly nucleated heads H1, H2, and H3 move with the same period
as that of the spiral. (a) A pinned anticlockwise spiral S. (b) When
S and T1 collide, the excitable gap φ (shaded in green) is nonzero.
This leads to failure of unpinning. (c) The E field falls behind the
refractory tail of H1 and nucleates a new wave with head H2 and tail
T2. (d) When T2 collides with H1 the nonzero φ leads to failure of
unpinning. (e) The E field lags once again and nucleates a new head
H3 and tail T3. (f) The unpinning fails in a similar fashion, as shown
in (d).

vanish [Figs. 2(d) and 2(f)]. So, if the unpinning fails within
the first rotation of the E field, then it keeps failing irrespective
of whether Tcp is lesser or greater than Ts.

B. Theory of unpinning with circularly polarized electric field

To provide validation for the unpinning mechanisms ob-
served in the simulations, we derive analytical formulas based
on the following assumptions. Figure 3 shows the schematic
diagram of the anticlockwise spiral unpinning. On the appli-
cation of the E field at t = 0, the wave nucleates from an
extended region rather than a point. At time t0, just after the

FIG. 3. Schematic diagram of anticlockwise spiral unpinning. (a)
Pinned spiral wave, S at time t = 0. α is the angular difference
between the E field and the spiral wavefront at time t = 0. (b) At
t = t0, excitation emerges out symmetrically making an angle θ0.
Meanwhile, S covers a distance of vst0. (c) S and T collide at time
t . θ1 and θ2 are the angle covered by T and H . The excitable gap
φ = 2π − (θ1 + θ2 ).

FIG. 4. (a) Graph of the excitable gap φ as a function of period
of the circularly polarized electric field Tcp for anticlockwise rotating
spiral. The radius of the obstacle r = 4. α’s denote the phase differ-
ence between the spiral and the initial direction of the electric field.
The solid lines represent the theoretical curves. (b) Graph of cutoff
period T ∗

cp as a function of obstacle radius r for anticlockwise rotating
spiral. The value of α = 0.

wave emerges and before it starts moving, it subtends an sym-
metric angle of 2θ0. In the time it takes for the wave to emerge
from the obstacle, the spiral S would move a distance of
rα + vst0 in the anticlockwise direction. Here, vs = (2πr/Ts)
is the velocity of S. Eventually, T and S collide. The expres-
sion for the collision time t between T and S can be obtained
as follows. The angular distance covered by S in an anticlock-
wise direction in time t can be expressed as α + (vst )/r. At
the same instant, T collides with S traveling clockwise and
covering an angle θ1 = θ0 + [vT (t − t0)]/r, where, vT is the
velocity of T . But we have [θ1 + α + (vst )/r] = π . So, we
can write the expression for t as follows:

t = r

vs + vT

(
π − α − θ0 + vT t0

r

)
. (4)

Meanwhile, H moves an angle of θ2 = θ0 + (2π/Tcp)(t − t0)
in the anticlockwise direction. But the total angle is θ1 + θ2 +
φ = 2π . Therefore, the final expression for the excitable gap
φ can be written as

φ = π + α + vst

r
− θ0 − 2π

Tcp
(t − t0) − θsw. (5)

In Fig. 3(c), we considered φ as the angle between the
wavefront of H and the waveback of S. However, on deriving
the equation, we found that the value of φ measured in sim-
ulations and the one obtained through the equations differed
by an angle corresponding to the width of the spiral on the
obstacle boundary. To compensate for this, we add θsw to φ,
which is the width of S on the obstacle boundary. In Eq. (5)
we took the quantity to the right-hand side (RHS).

Equation (5) is plotted as a function of Tcp for an obstacle of
radius r = 4 for three different phase differences α = 0, π/4,
and −π/4 in Fig. 4(a). The curve predicted by Eq. (5) agrees
with the one obtained through simulations.
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What happens when the initial phase difference α is var-
ied? Consider a case with α = π/4. Then S is much closer
to T at t = 0. If H has to meet the collision point of T
and S simultaneously and unpin the spiral, then the E field
should move much faster on the boundary of the obstacle.
So it should have a shorter time period, i.e., the cutoff period
T ∗

cp(α = π/4) < T ∗
cp(α = 0). If α = −π/4 is the initial phase

difference then S is closer to H than T at t = 0. So S has more
distance to cover on the boundary of the obstacle to reach T .
So, E should have a longer time period [T ∗

cp(α = −π/4) >

T ∗
cp(α = 0)] such that H reaches the collision point of T and

S only when those two collide. So, depending upon how the
initial phase difference α is varied, the period of the E field
should be timed so that H , S, and T meet together and unpin
the spiral. This confirms that in this mechanism of unpinning,
we do not have an unpinning window. However, for a given
phase difference α, we only have a threshold value for Tcp

below which there is always unpinning.
The variation of the excitable gap φ as a function of Tcp for

different phase differences (α’s) are shown in Fig. 4(a). The x
intercept of each curve gives the cutoff period T ∗

cp. Once the
cutoff period T ∗

cp is determined for an obstacle of radius r and
phase difference α, the unpinning is guaranteed for all the time
periods lower than T ∗

cp.
If we set the left-hand side of Eq. (5) to zero, we can write

T ∗
cp as a function of the phase difference α and the obstacle

radius r. To test our theory, we performed simulations for
obstacles of a different radius and a fixed phase difference of
α = 0. The curve obtained through simulation study matches
the theoretical predictions. The results are shown in Fig. 4(b).

IV. CONCLUSION

In this paper, we identified a robust mechanism for un-
pinning the spiral waves using a CPEF. We show that for an
obstacle of a given radius and fixed phase difference of the
spiral, it is always possible to time the period of the electric
field so that unpinning is guaranteed. This period is called
the cutoff period of the electric field. When the period of the
electric field is below the cutoff, the spiral is unpinned before
it finishes one full rotation around the obstacle and within
the first rotation of the electric field. Our theory accurately
predicts this cutoff period and is also quantitatively consistent
with all the simulation results. Since arguments used in deriv-
ing the theory are based only on fundamental properties of the
excitable media, we expect these results to be valid in more
general settings.

Typical unpinning studies with field stimulus identify an
unpinning window, which is a phase window of the spiral
during which it can be unpinned using a field pulse. How-
ever, in our mechanism with the CPEF, there is no unpinning
window. All rotating fields below the cutoff frequency can
result in unpinning. Yet it must be noted that we use a simple
monodomain model for simulating the effect of the electric
field near the obstacle. A bidomain model, which is the more
accurate model of the cardiac tissue, predicts a complicated
distribution of polarization around an obstacle, and it could
affect the mechanism of unpinning [19].

Our results can be tested in experiments that show 2D
excitation waves, including cardiac monolayers and excitable

chemical media. Specifically, experimental verification of the
results showed in Fig. 2 would serve as a qualitative test for
our mechanism. The CPEF can be obtained by using two
perpendicular AC electric fields with a phase difference of
π/2 generated with a pair of electrodes kept mutually perpen-
dicular to each other. We hope that our analytical results of
the spiral wave unpinning using CPEF will stimulate further
studies in this direction.
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APPENDIX: UNPINNING OF CLOCKWISE
ROTATING SPIRAL

The unpinning of a clockwise rotating spiral by E field is
shown in Fig. 5. After the E field induces the depolarization,
H and S start moving towards each other. They eventually
collide and start detaching from the obstacle as the excitation
cannot go past the refractory tail left behind by the other
[Fig. 5(c)]. Since the E field is rotating, it induces a new
excitation head N once it crosses the refractory tail of S.
The nonzero excitable gap φ from the wavefront of N to the
wavefront of T , when H and S just detach from the obstacle,
prevents unpinning. In Figs. 5(g) to 5(l) the E field having
a smaller rotation period (Tcp = 3.6764) is used. Now, when
H and S fuse and detach from the obstacle, the new head N
already collided with T . So, there is no excitable gap. This
leads to the successful unpinning of the spiral [see Fig. 5(l)].
Since we kept the radius of the obstacle and phase difference
fixed, similar to the anticlockwise case, if we keep on reducing
the time period Tcp, we will reach a point where the excitable
gap φ = 0. This is the cutoff time period T ∗

cp of the E field.
Below this, φ is always zero, and therefore there is always
unpinning.

The schematic diagram of the clockwise spiral unpinning
is shown in Fig. 6. α is the phase difference between the E
field and the spiral wavefront at time t = 0. At the time t0, the
nucleated wave subtends a symmetric angle of 2θ0. When the
depolarization emerges out of the obstacle, S moves clockwise
towards H , covering a distance of vst0. Later, H and S collide
at time t = t1.

The angle covered by H before the collision with S can
be given as θ2 = θ0 + (2π/Tcp)(t1 − t0). In the meantime, S
travels clockwise and covers an angular distance of (vst1)/r.
But we have θ2 + (vst1)/r = π + α. We use these conditions
to obtain a formula for t1:

t1 =
(

π + α − θ0 + 2πt0
Tcp

)(
rTcp

2πr + Tcpvs

)
. (A1)

Once H and S collide, they begin to detach from the ob-
stacle. As the detachment is in progress, the anticlockwise
rotating E field, nucleates a new head N once it crosses the
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FIG. 5. Unpinning of a clockwise rotating spiral. The radius of the obstacle r = 4 and the phase difference α = 0. (a)–(d) Unsuccessful
case, period of the rotating field Tcp = 10.4166. (a) A clockwise rotating pinned spiral wave S. (b) Excitation is emitted from the obstacle.
(c) H and S collide. (d) When H and S fuse together and detach from the obstacle, the electric field nucleates a new wave N . The excitable
gap φ > 0 (shaded in green) between N and T keeps the spiral pinned to the obstacle (f). (g)–(l) Successful case, period of the rotating field,
Tcp = 3.6764. (j) When N collides with T , the excitable gap is zero, and this leads to successful unpinning (l).

refractory tail of S. For an obstacle of a given radius, how
fast the E field crosses the refractory tail depends on how
small its time period Tcp is. Let us denote the time taken by
the E field to cross the refractory tail of S and nucleate N
as �τ1. Once the detachment of H and S from the obstacle
is complete at time t = t1 + �τ2, we measure the excitable
gap φ = 2π − (θN + θT ). Here, �τ2 is the time taken by
H and S to detach from the obstacle after their collision
at t = t1. The angle covered by T can be written as θT =
θ0 + (t1 − t0 + �τ2)(vT /r) whereas the total angle covered
by the head (H and N included) is θN = θ0 + (2π/Tcp)(t1 −
t0) + (2π/Tcp)(�τ2 − �τ1).

We can identify two cases depending on whether the term
(�τ2 − �τ1) in θN is positive or negative. The first case is
�τ2 > �τ1. Here, Tcp is fast enough so that the new head N
is nucleated before H and S detaches from the obstacle. Then

FIG. 6. Schematic diagram of clockwise spiral unpinning.
(a) Pinned spiral wave S. α is the phase difference between the E
field and the spiral wavefront at time t = 0. (b) At t = t0, excitation
emerges out symmetrically making an angle θ0. Meanwhile, S covers
a distance of vst0 moving clockwise. (c) S and H collide at time t1.
θ1 and θ2 are the angle covered by S and H . Meanwhile, T covers
a distance of vT t1. (d) At time t1 + �τ1, the rotating electric field
nucleates a new wave N after crossing the refractory tail of S. (e) At
t = t1 + �τ2, H and S detach from the obstacle. The excitable gap
φ = 2π − (θN + θT ).

the excitable gap φ can be given as

φ = 2(π − θ0) −
(

2π

Tcp
+ vT

r

)
(t1 − t0 + �τ2)

+ 2π�τ1

Tcp
− θsw. (A2)

In theory, the angular distance φ is calculated between the
collision point of H and S and the wavefront of T . But, in
simulations, it is measured between the wavefronts of N and
T . To compensate for this, we subtract θsw from Eq. (A2).
Here, θsw is the width of the newly nucleated head N on the
boundary of the obstacle.

FIG. 7. (a) Graph of the excitable gap φ as a function of period of
the rotating electric field Tcp for a clockwise rotating spiral. The ra-
dius of the obstacle r = 4 and the phase difference α = 0. (b) Graph
of cutoff period T ∗

cp as a function of obstacle radius r for clockwise
rotating spiral.
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In the second case (i.e., �τ2 < �τ1), Tcp is so slow that
it cannot cross refractory tail of S until H and S detach from
the obstacle. So N does not reappear at all and �τ1 = 0. So,
θN = θ0 + (2π/Tcp)(t1 − t0). Then, the excitable gap φ can be
written as

φ = 2(π − θ0) −
(

2π

Tcp
+ vT

r

)
(t1 − t0) − vT �τ2

r
. (A3)

In the second case, φ is measured from the point of collision
between the H and S.

The parameters �τ1 and �τ2 are measured directly from
the simulations. As mentioned above, �τ1 varies with the
period of the applied E field. For an obstacle of radius r
and phase difference α, we measured �τ1 as a function

of Tcp. For the measured values, we obtain a straight line
fit (�τ1 = mTcp + c) where m and c are the slope and in-
tercept of the straight line. Both the parameters m and c
are the functions of radius r and the spiral phase α. The
measured values of the parameter �τ2 are found to be a
constant.

Somewhere in between the two cases �τ2 = �τ1. We call
the corresponding Tcp as Tcp transition. Since �τ2 is a known
constant, the value of Tcp transition can be calculated from
the straight line fit of �τ1. The results are summarized in
Fig. 7. Similar to the anticlockwise mechanism, the unpinning
happens within one rotation of the E field, and if we vary the
phase difference α, we find that there is no unpinning window
for this mechanism.
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