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Abstract: We study the phase structure of Lifshitz and hyperscaling violating
black holes using Lyapunov exponents. For describing hyperscaling violating system,
we chose a particular gravity model constructed from generalized Einstein-Maxwell-
Dilaton action which includes the Lifshitz cases in appropriate limit. We study the
relationship between Lyapunov exponents and black hole phase transitions consid-
ering both the timelike and null geodesics. We observe that, the black hole phase
transiton properties are reflected in Lyapunov exponent where its multiple branches
correspond to the distinct phases of the black hole. The discontinuos change of the
Lyapunov exponent during the phase transition serve as an order parameter with
critical exponent 1/2 near the critical point. Our numerical study reveals that the
correlation between the Lyapunov exponent and black hole thermodynamic proper-
ties can be generalised beyond the AdS spacetime. We find that it is independent of
the HSV parameter as well as the Lifshitz exponent.
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1 Introduction

Gauge/gravity duality, also termed as holographic correspondence, establishes a pro-
found relationship between a (relativistic) field theory and a gravity theory in one
higher spatial dimension [1–5]. The application of this duality to real-world field the-
ories has sparked renewed interest in the phenomenology of gravitational models. An
example of this duality is the anti-de Sitter/conformal field theory (AdS/CFT) corre-
spondence, which links string theory in negatively curved backgrounds to conformal
field theories in one less non-compact spatial dimension. Notably, the strong coupling
limit of the boundary field theory aligns with the supergravity limit of the bulk string
theory. Consequently, holography serves as a prototype for illustrating features of
strongly coupled relativistic field theories. This modeling approach has found diverse
applications, including investigations into the physics of the quark/gluon plasma and
exploring condensed matter systems, ranging from superconductors to (non) Fermi
liquids. Despite these applications, there is a widespread effort to understand and
employ holography in a more generic manner. In condensed matter physics, nu-
merous systems are believed to be governed by strongly interacting non-relativistic
physics 1, prompting the natural question of whether holography can provide insights

1For instance, in the realm of field theories featuring finite charge density, the presence of an
electric current disrupts Lorentz invariance.
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into such systems (See Refs [6–9] for the application of holographic techniques to the
study of condensed matter systems).

Gauge/gravity duality is a useful tool for studying strongly-coupled systems near
critical points. At such points, the system exhibits a scaling symmetry and can be
described by a conformal field theory (CFT). From the gauge/gravity perspective,
this means that the gravitational theory is defined on a metric that is asymptotically
locally Anti-de Sitter (AdS). However, in many physical systems, critical points are
characterized by dynamical scalings, where, despite exhibiting scaling symmetry,
space and time scale differently. A notable example is the Lifshitz fixed point, where
the system is spatially isotropic and scale-invariant, but time exhibits an anisotropic
scaling characterized by a dynamical exponent, z. This scale symmetry is expressed
as follows:

t → ξzt, xi → ξxi, (1.1)

here t represents time, and xi denotes spatial coordinates. In the context of gauge/gravity
duality, it is essential to find gravitational theories that provide a gravity description
of Lifshitz fixed points. The corresponding metric can be written as

ds2 = −r2zdt2 + r2
d∑

i=1

dx2
i +

dr2

r2
. (1.2)

It is evident that the Lifshitz geometry, characterized by its anisotropic nature,
cannot be a solution of pure Einstein gravity. (Notably, when z = 1, the metric
reduces to the familiar AdS form). A gravity dual for the Lifshitz fixed point can
be obtained by considering a gravitational theory that admits a solution showcasing
the scaling symmetry mentioned in Eq. 1.1 (see Ref. [10]). In the context of
bottom-up model building, a natural framework to explore is the Einstein-Maxwell-
Dilaton (EMD) theory. This setup has been extensively studied in the literature,
yielding Lifshitz-like black brane geometries [11–25] (see Ref. [26] for a review on the
holographic modeling of field theories with Lifshitz symmetry). With the inclusion of
a dilaton and Abelian gauge fields, more sophisticated metrics generalizing Lifshitz
can be derived. These metrics, in addition to anisotropic scaling, may feature an
overall hyperscaling factor. Specifically, a geometry can take the form:

ds2 = r
−2θ
d

(
−r2zdt2 + r2

d∑
i=1

dx2
i +

dr2

r2

)
, (1.3)

where z and θ are dynamical and hyperscaling violation (HSV) 2 exponents, respec-
tively. To reiterate, z characterizes the departure from Lorentz invariance, while θ

characterizes the deviation from the scale-invariant limit. This generalized geometry
2We use the abbreviation HSV for hyperscaling-violating and hyperscaling violation interchange-

ably
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has garnered recent attention 3, and HSV Lifshitz solutions have been identified in
various settings [29–35]. It represents the most general spatially homogeneous and
covariant geometry under the scale transformations: 4

t → ξzt, r → ξ−1r, xi → ξxi, dsd+2 → ξ
θ
ddsd+2. (1.4)

Notably, specific solutions for black holes that violate hyperscaling have been identi-
fied in gravitational theories incorporating higher-order gravitational corrections or
additional matter fields, such as massive vector fields or a Maxwell field coupled to
a dilation [28, 37–50].

On an alternate front, nearly fifty years following Hawking’s discovery of black
hole radiation, the thermodynamics of black holes continues to be a guiding light in
the exploration of quantum gravity (see Ref [51–56] for pioneering works on black
hole thermodynamics). Analogous to conventional thermal systems, black holes ex-
hibit fundamental thermodynamic attributes such as temperature, entropy, and other
thermodynamic properties. The variations between equilibrium configurations find
systematic elucidation through the first law of thermodynamics. Notably, this sim-
ilarity with conventional thermodynamics extends into the domain of phase tran-
sitions. With the introduction of the AdS/CFT correspondence [2–4], there has
been extensive investigation into the thermodynamics and critical behaviour of di-
verse AdS black holes [57–63]. In particular, charged AdS black holes exhibit a van
der Waals (vdW)-like phase transition. This transition encompasses a first-order
phase transition terminating at a second-order critical point in a canonical ensemble
[59, 60], and a Hawking-Page-like phase transition in a grand canonical ensemble
[62]. In the extended phase space, wherein the cosmological constant is regarded as
thermodynamic pressure [64–66], investigations into the thermodynamics and crit-
ical phenomena of AdS black holes has revealed a spectrum of novel phenomena
[67–86]. The comprehensive understanding of black hole thermodynamics is still elu-

3The Lifshitz geometry has been proposed as a potential framework for understanding the be-
havior of strange metals in a holographic context[27]. Additionally, to study a system that has a
Fermi surface, we can examine hyperscaling violating (HSV) geometries within a specific range of
parameters for its gravitational dual [28].

4When examining the gravitational perspective, the issue can be approached in reverse. As
indicated in equation 1.4, a distinctive characteristic of the HSV metric is that the proper distance
in the emergent spacetime undergoes non-trivial transformations under scale transformations, gov-
erned by the exponent θ. In the standard AdS/CFT correspondence, the proper distance remains
invariant with θ = 0, rather than exhibiting covariant transformation under scale operations.

A meaningful connection exists between volume elements in the holographic space and various
entropic measures of the boundary theory. This connection implies that a non-zero value of θ will
alter the scale transformation of the thermal entropy density, denoted as S. Consequently, using this
rationale, it becomes evident that θ serves as the HSV exponent for the boundary theory. Thus, the
non-invariance of the proper distance in the holographic theory implies violations of hyperscaling
on the boundary. [36]
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sive, prompting a strong push to explore the phase structure of black holes from
diverse perspectives. One recent endeavor in this direction involves the utilization of
Lyapunov exponent[87].

The Lyapunov exponent proves instrumental in studying chaotic dynamics within
the framework of general relativity—a nonlinear dynamical theory. It serves as effec-
tive tool to analyze the spacetime perturbations and particle orbits in the vicinity of
black holes. The Lyapunov exponent λ can be used as an indicator of the separation
rate between neighboring trajectories. It reflects the sensitivity of the system to the
initial condition. When λ > 0, it indicates a chaotic system, which means that even
a slight difference in the initial conditions will lead to an exponential separation of
trajectories. When λ = 0 the system is stable, neighboring trajectories will main-
tain a distance without diverging or converging. If λ < 0, the particle orbit will be
asymptotically stable, resulting in the nearby trajectories tending to overlap. Ex-
tensive research has been devoted to exploring the chaotic motion of particles within
various black hole spacetimes [88–100]. Specifically, investigations into particle mo-
tion near black hole horizons have revealed that the Lyapunov exponent adheres
to a universal upper bound proposed within the gauge/gravity duality framework
5 [102, 103]. However, counterexamples challenging this upper bound have been
reported [104, 105].

The interrelation between the Lyapunov exponent and the phase structure of
black holes becomes evident through their mutual connection with black hole quasi-
normal modes (QNMs). The Lyapunov exponents of unstable null geodesics have
been found to be closely linked to the imaginary part of a specific class of quasinor-
mal modes in black hole spacetime [106, 107]. Remarkably, black hole QNMs exhibit
pronounced changes near phase transition points [108, 109]. This observation sug-
gests that the characteristic phenomenon of QNMs near phase transition points can
be reflected by Lyapunov exponents. Therefore, Lyapunov exponent provide insights
into the divergence and convergence rates of particle orbits around the equatorial
plane of the black hole in the context of black hole phase transitions. From these
observations, a direct relation between Lyapunov exponents and black hole phase
transition was established in Ref. [87]. The occurrence of a phase transition can be
identified by a discontinuous jump in the value of the Lyapunov exponent λ, and its
difference ∆λ can be characterized as an order parameter. At the phase transition
point, the critical exponent of λ has been calculated as 1/2, aligning with the circular
orbit radius. This discovery has opened up a new pathway for exploring the black
hole phase structure using the Lyapunov exponent [110, 111].

5Maldacena, Shenker, and Stanford conjectured a universal upper limit on Lyapunov exponent
λ in the context of chaos in thermal quantum systems with a large number of degrees of freedom:
λ ≤ 2πT

ℏ , where T represents temperature of the system [101]. Considering the quantum nature
of black holes, characterized by a temperature derived from the Hawking expression T = ℏκ

2π , the
conjectured upper bound can be refined to λ ≤ κ, where κ is surface gravity.
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It is natural to extend the study from AdS spacetime to a more general setting,
namely Lifshitz and HSV black holes. This article aims to investigate the thermody-
namic phase structure of Lifshitz and HSV black holes utilizing Lyapunov exponent.
The article is organized as follows: In the next section (Section 2), we provide a quick
and concise introduction to constructing a generic HSV gravity model, encompassing
the Lifshitz spacetime. In the same section, we outline the critical phenomena of the
spacetime in the canonical ensemble. Subsequently, in Section 3, we introduce the
geodesic motion of massive and massless particles in connection with the Lyapunov
exponent. In Section 4, we investigate the phase structure of the black hole space-
time using the Lyapunov exponent. Finally, we conclude our findings in Section 5
with a discussion.

2 Hyperscaling violating black hole: Solution and thermody-
namics

In this section, in line with the reference [112], we introduce the model under con-
sideration along with its thermodynamic details. In [112], the authors introduced an
electrically charged black brane which is characterised by arbitrary Lifshitz exponent
z and HSV parameter θ by using a generalized EMD action. The resulting solutions
includes novel features, such as spherical and hyperbolic horizon topologies, in ad-
dition to the planar horizons identified in Ref. [39]. As particular cases, these new
solutions incorporate the spherical Lifshitz black holes previously identified in [20].
It is noteworthy that the admissible values for z and θ are constrained by the null
energy condition (NEC). The occurrence of phase transitions is exclusive to spherical
black holes characterized by 1 ≤ z ≤ 2, with no restrictions on θ.

In this section, we present the essential equations required for the subsequent
calculations. While the equation set may seem intricate, we include them for the
sake of self-containment in the article. For a more detailed discussion on the model,
we direct readers to Ref. [112] and the references therein.

2.1 The black hole model and solutions

The theory describing the generic HSV black hole spacetime is a modification of the
standard EMD theory [28]. This modified theory introduces two additional vector
fields, H and K, where H supports non-trivial topology, and K supports states with
finite charge density. The action is given by:

S = − 1

16πG

∫
dd+2x

√
−g

[
R− 1

2
(∇µϕ)

2 + V (ϕ)− 1

4
X(ϕ)F 2 − 1

4
Y (ϕ)H2 − 1

4
Z(ϕ)K2

]
,

(2.1)
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where the fields are associated with the corresponding gauge potentials as F = dA,
H = dB, and K = dC. The potential and dilaton couplings are chosen as:

V = V0e
λ0ϕ, X = X0e

λ1ϕ, Y = Y0e
λ2ϕ, Z = Z0e

λ3ϕ , (2.2)

with arbitrary constants V0, X0, Y0, Z0, and λi. The positive constants X0, Y0, and
Z0 are the magnitude of the coupling between the gauge fields and gravity. In natural
units, the solution to the field equations is given by:

ds2 =

(
r

rF

)−2θ/d(
−
(r
ℓ

)2z
f(r)dt2 +

ℓ2

f(r)r2
dr2 + r2dΩ2

k,d

)
,

A = a(r)dt , B = b(r)dt , C = c(r)dt , ϕ = ϕ(r) .

(2.3)

The parameter k takes on values of −1, 0, 1, corresponding to the hyperboloid, planar,
or spherical topology for the black hole horizon, where

dΩ2
k=1,d = dχ2

0 + sin(χ0)
2dχ2

1 + · · ·+ sin(χ0)
2 · · · sin(χd−2)

2dχ2
d−1 ,

dΩ2
k=0,d =

dx⃗2
d

ℓ2
, dΩ2

k=−1,d = dχ2
0 + sinh(χ0)

2dΩ2
k=1,d−1 ,

(2.4)

the angles χi represent angular coordinates. The constant ℓ is the generalization of
the AdS radius. The parameter z is the Lifshitz dynamical exponent and θ is the HSV
exponent, both corresponding to the symmetries of the underlying theory. At r → ∞,
we anticipate f(r) to approach unity. In this limit, the equation (2.3) stands as a
comprehensive metric which maintains covariance under the scale transformations
outlined in Eq. 1.4. Within the framework of this model (Eq. 2.1), the introduction
of F supports the Lifshitz asymptotics of the geometry, H contributes to the topology
of internal space, and K corresponds to solutions involving electric charge. The scalar
potential V (ϕ) plays a pivotal role in facilitating the HSV factor of the solution.

The solution to the field equations are obtained in terms of the constants z, θ,
and k, which reads,

ϕ =ϕ0 + γ log r,

F =− ρ1e
−λ1ϕ(r)r−

2θ
d
−d+θ+z−1dtdr,

H =− ρ2e
−λ2ϕ(r)r−

2θ
d
−d+θ+z−1dtdr,

K =− ρ3e
−λ3ϕ(r)r−

2θ
d
−d+θ+z−1dtdr,

f =1 + k
(d− 1)2

(d− θ + z − 2)2
ℓ2

r2
− m

rd−θ+z
+

q2

r2(d−θ+z−1)

(2.5)
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Here, γ ≡
√

2 (d− θ) (z − 1− θ/d), and the remaining quantities are defined as:

λ0 =
2θ

γd
, λ1 = −2 (d− θ + θ/d)

γ
, λ2 = −2(d− 1)(d− θ)

γd
, λ3 =

γ

d− θ
,

V0 =(d− θ + z − 1)(d− θ + z)ℓ−2r
−2θ/d
F e−λ0ϕ0 ,

ρ21 =2(z − 1)(d− θ + z)X−1
0 ℓ−2zr

2θ/d
F eλ1ϕ0 ,

ρ22 =2k
(d− 1)(d(z − 1)− θ)

d− θ + z − 2
Y −1
0 ℓ2(1−z)r

2θ/d
F eλ2ϕ0 ,

ρ23 =2q2(d− θ)(d− θ + z − 2)Z−1
0 ℓ−2zr

2θ/d
F eλ3ϕ0 .

(2.6)

It is important to emphasize that the parameters m and q, related to mass and charge
respectively, are embedded in f(r), and they can assume arbitrary values as long as
the black hole solution exists. It is crucial to note that the validity of the solution is
contingent upon the constraints d− θ + z − 2 > 0 and γ ∈ R.

Now, let us delve into the exploration of the thermodynamics and critical phe-
nomena associated with the aforementioned black hole solutions. Notably, the family
of black hole solutions characterized by spherical topology (the case where k = 1)
exhibits a non-trivial phase structure. Importantly, the qualitative features of the
thermodynamics in the HSV case (θ ̸= 0) are similar to the charged Lifshitz black
holes case (θ = 0) [20]. Therefore, our analysis in the following sections, particularly
regarding the Lyapunov exponent, will include both the HSV and Lifshitz cases.

From the perspective of the dual theory, hyperscaling is the property that the free
energy of the system scales with its naive dimension. At finite temperature, theories
exhibiting hyperscaling feature an entropy density scaling with temperature as S ∼
T d/z. However, when hyperscaling is violated, a modified relationship emerges, S ∼
T (d−θ)/z, suggesting that the system effectively resides in a dimension deff = d−θ [36,
113]. Roughly speaking, in a theory with hyperscaling violation, the thermodynamic
behavior mimics a theory with a dynamical exponent z but inhabits d−θ dimensions.
Dimensional analysis is restored in these theories because they typically involve a
dimensionful scale that does not decouple in the infrared, giving rise to such behavior.
One can then employ appropriate powers of this scale, denoted as rF , to restore naive
dimensional analysis 6.

Charged black holes exhibit a complex structure with multiple inner horizons
and a distinct outer horizon (event horizon). This event horizon, denoted as rh,
is determined by finding the largest positive root of the equation f(rh) = 0. In
addition to the horizon radius rh, the black hole system is characterized by various
length scales: the generalised AdS radius ℓ, the ultra-violet scale rF , the scalar
amplitude ϕ0, and the charge parameter q. These parameters collectively govern the

6The case θ = d − 1 offers a promising gravitational representation of a theory with a Fermi
surface in terms of its leading large N thermodynamic behavior. In this scenario, the relevant
dimensionful scale is, of course, the Fermi momentum [36, 114].
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thermodynamic properties of the black hole. The mass parameter, m can be written
in relation to the horizon radius rh by satisfying the condition f(rh) = 0, as expressed
in the equation

m = rd+z−θ
h

[
1 + k

(d− 1)2

(d− θ + z − 2)2
ℓ2

r2h
+

q2

r
2(d−θ+z−1)
h

]
. (2.7)

For the spherical black holes of interest in this article, m is non-negative. The
Hawking temperature (T ) is computed using standard Euclidean trick:

T =
1

4π

(rh
ℓ

)z+1 ∣∣f ′(rh)
∣∣ . (2.8)

The absence of conformal factor, which encompasses the ultraviolet scale rF , in
this formula is related to the conformal invariant of Hawking temperature [115].
Substituting the expressions for f(r) from Eq. 2.5 for the blackening factor and (Eq.
2.7) for the mass parameter into the temperature formula yields

T =
rzh

4πℓz+1

[
(d− θ + z) + k

(d− 1)2

(d− θ + z − 2)

ℓ2

r2h
− (d− θ + z − 2)q2

r
2(d−θ+z−1)
h

]
. (2.9)

The entropy is determined by the area law,

S =
ωk,d

4G
rd−θ
h rθF . (2.10)

where ωk,d defined by the unit metric dΩ2
k,d represents the volume of the space.

Notably, the entropy remains independent of z but explicitly relies on θ. Moreover,
extremality is attained when the temperature tends to zero. This occurs when the
charge parameter is given by

q2ext = r
2(d+z−θ−1)
ext

[
d− θ + z

d− θ + z − 2
+ k

ℓ2

r2ext

(d− 1)2

(d− θ + z − 2)2

]
, (2.11)

with rext representing the horizon radius of the extremal black hole which is charac-
terised by f(rext) = f ′(rext) = 0. The corresponding mass parameter in terms of rext

yields

mext = 2rd−θ+z
ext

[
d− θ + z − 1

d− θ + z − 2
+ k

ℓ2

r2ext

(d− 1)2

(d− θ + z − 2)2

]
. (2.12)

The extremal solution signifies the ground state in the canonical ensemble, and its
finite entropy indicates a high degree of degeneracy—a well-established trait shared
with charged AdS black holes [59]. The ADM mass is given by

M =
ωk,d

16πG
(d− θ)mℓ−z−1rθF . (2.13)

For θ = 0, this expression reduces to that of pure Lifshitz case.
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The overall electric charge of the black hole is determined by the conserved charge
associated with the field strength K:

Q ≡ QK =
1

16πG

∫
Z(ϕ) ∗K =

ωk,d

16πG
Z0ρ3ℓ

z−1r
θ−2θ/d
F (2.14)

=
ωk,d

16πG

√
2Z0(d− θ)(d− θ + z − 2) q ℓ−1r

θ−θ/d
F eλ3ϕ0/2

It is noteworthy that analogous expressions exist for the remaining two conserved
charges QF and QH in relation to ρ1 and ρ2. Nevertheless, these two charges lack a
direct thermodynamic interpretation. 7

The verification of the first law of thermodynamics is straightforward using the
defined thermodynamic quantities. In the canonical ensemble, a comparison to the
extremal case, rather than the thermal case, necessitates a modified form of the first
law:

dM̂ = TdS + Φ̂dQ , (2.15)

Here, the adjusted mass and electric potential are articulated as:

M̂ = M −Mext =
ωk,d

16πG
(d− θ)(m−mext)ℓ

−z−1rθF , (2.16)

Φ̂ = Φ− Φext =
q

c

(
1

rd−θ+z−2
h

− 1

rd−θ+z−2
ext

)
. (2.17)

It is essential to note that each of the aforementioned thermodynamic quantities,
along with the specific expressions of the first laws, can be obtained by using the
Euclidean method (refer to Appendix A in [112]).

2.2 Thermodynamics in canonical ensemble

Our objective is to explore the black hole phase structure within the canonical en-
semble, where the charge Q is held constant, while the potential at infinity Φ is
permitted to change. The free energy can be obtained by the standard formula as,

F = M̂ − TS

=
ωk,d

16πG
ℓ−z−1rθF

[
−mext(d− θ)− zrd−θ+z

h + k
(d− 1)2(2− z)

(d− θ + z − 2)2
ℓ2rd−θ+z−2

h

+ (2d− 2θ + z − 2)q2r
−(d−θ+z−2)
h

]
,

(2.18)
7The thermodynamics does not involve the gauge potentials A and B. These fields are included

in the theory only to maintain the required structure and geometry of the spacetime. However,
modifying the charges associated with these potentials, namely QF and QH , would entail altering
the symmetries and geometry of the boundary field theory, significantly impacting the holographic
interpretation. We note that this could serve as motivation to initiate the exploration of the
holographic thermodynamics (which has gained significant interest in the community recently [116])
of HSV spacetime.
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Figure 1. Hawking temperature vs. horizon radius and free energy vs. Hawking tem-
perature depicted for two distinct charge regimes: Q = 1.25Qcrit > Qcrit (top row) and
Q = 0.25Qcrit < Qcrit (bottom row). The figures are generated with fixed spacetime pa-
rameters, including (θ = 0, k = rF = Z0 = Φ0 = 1, d = 3,Ωkd = 16πG, z = 3/2). The
qualitative behavior of these figures remain same for all allowed values of θ and z.

where mext is given by (2.12). Although our primary interest is in the spherical black
hole case (k = 1), this result remains applicable for each k as the extremal black hole
consistently represents the reference background in the canonical ensemble. Within
the canonical ensemble, both solutions possess an identical charge parameter q = qext,
defined by (Eq. 2.11). The horizon radius rh implicitly depends on T and q through
(Eq. 2.9), allowing F to be regarded as a function of T and q.

In reference [112], it was discovered through numerical inspection that for planar
and hyperbolic black holes, the thermodynamic potential F < 0. This explains the
absence of a phase transition for these kind of black holes for all possible values of θ
and z. However, for spherical black holes, there exist a phase transition which closely
resembles that of charged AdS black holes revealed in [59, 60]. The phase diagram
for spherical black holes exhibits a consistent qualitative pattern for every θ, yet it
varies for different values of z. This is the reason we confine our focus to spherical
HSV solutions in this article.

Figure 1 showcases T − rh and F − T plots for two distinct charge values, high-
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lighting distinctive patterns for values both above and below a critical threshold,
identified as Qcrit. (The critical value is computed shortly). For charges above crit-
ical value (Q > Qcrit), the temperature T exhibits an injective relationship with rh,
and F remains always negative, which underscores the dominance of charged black
hole solutions in the phase portrait. Conversely, for small charges (Q < Qcrit), a tem-
perature range emerges where three distinct branches of black hole solutions coexist
(indicated by the blue star and black circle). Here, the thermodynamic potential
F showcases the characteristic "swallowtail" pattern observed in charged AdS black
holes [59, 60].

In the F − T plot for Q < Qcrit, three distinct branches are observed. The first
branch, referred to as the small black hole (SBH) branch, originates from the origin
and terminates at the blue star. The second branch, known as the intermediate black
hole (IBH) branch, extends between the blue star and the black circle. The third
branch, representing the large black hole (LBH) branch, exhibits a cusp with the
second branch at the black circle and continues downward as temperatures increase.
The occurrence of a first-order phase transition between a SBH nad LBH phase is
marked precisely when the SBH and LBH branches intersect in the (F, T ) diagram.
The IBH branch, characterized by a negative heat capacity at constant charge CQ,
is thermodynamically unstable and does not influence the phase diagram. As Q ap-
proaches Qcrit, the IBH branch gradually diminishes, and the SBH and LBH branches
eventually merge. At Q = Qcrit, a second-order phase transition between SBH and
LBH phases persists, designating this point in the phase portrait as a genuine critical
point. Beyond Qcrit, no further phase transitions occur.

Analyzing the temperature in relation to the horizon radius allows for the de-
termination of the critical charge Qcrit. Notably, for Q < Qcrit, the temperature
displays two turning points, while for Q > Qcrit, no turning points are observed. At
the critical charge Q = Qcrit, the temperature exhibits an inflection point with the
following conditions:

∂T

∂rh
= 0 and

∂2T

∂r2h
= 0 at rh = rcrit , q = qcrit . (2.19)

Solving these equations yields the critical values:

r2crit = k
(d− 1)2(2− z)ℓ2

z(d− θ + z − 1)(d− θ + z)
and , q2crit =

z(d− θ + z)r
2(d−θ+z−1)
crit

(d− θ + z − 2)2(2d− 2θ + z − 2)
.

(2.20)
For (θ = 0, z = 1), these results align with findings in [59], and for arbitrary z values,
they agree with results in [20]. The value of critical temperature is given by:

Tcrit =
(d− θ + z − 1)(d− θ + z)

π(2− z)(2d− 2θ + z − 2)

rzcrit
ℓz+1

. (2.21)

Analyzing these critical quantities elucidates a crucial distinction: for z > 2 or
k ̸= 1, the absence of a critical temperature is evident. This agrees with the absence
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of phase transitions in hyperbolic and planar HSV black holes within the canonical
ensemble. Additionally, the critical point persists for all physically plausible values
of θ that adhere to the NEC. The positive nature of Tcrit stems directly from the
constraints imposed by the NEC. Therefore, while the critical point value may vary
depending on θ, the phase structure remains qualitatively the same for all θ. Fur-
thermore, the occurrence of phase transitions depends on z, with the critical point
existing only for 1 ≤ z < 2. In the case of z = 2, the Hawking-Page phase transition
remains at Q = 0, while for z > 2, the black hole solution dominates the whole phase
portrait excluding the origin. These findings are same as obtained for pure Lifshitz
case in [20].

In summary, HSV black holes in the canonical ensemble exhibit a phase structure
similar to charged AdS black holes, drawing parallels with the vdW liquid-gas system.
Both systems feature a line of first-order phase transitions between distinct phases,
culminating in a critical point. This analogy was explored further in Ref. [112],
revealing that the critical exponents characterizing HSV black holes align perfectly
with those of the vdW fluid. Intriguingly, these critical exponents remain invariant,
irrespective of the values of z or θ. This robust universality, reminiscent of mean-
field theory expectations, underscores the insensitivity of the system to microscopic
details. Subsequent sections will delve into the behaviour of Lyapunov exponent in
HSV black holes, reinforcing its agreement with these universal characteristics.

In the rest of the paper we work with the rescaled thermodynamic quantities for
convinience. By dimensional analysis, we find that the physical quantities scale as
powers of l,

Q̃ = Q/l(d−θ+z−1) r̃h = rh/l T̃ = T l M̃ = M/l(d−1) r̃ = r/l (2.22)

where the tildes denote dimensionless quantities 8.

3 Geodesic motion and Lyapunov Exponents

In this section, we concisely outline the calculation establishing the relationship be-
tween the principal Lyapunov exponent (λ) for unstable orbits and the effective
potential in the radial motion of both massless and massive particles. This deriva-
tion takes a more generalized form, specifically applicable to HSV spacetimes where
gtt ̸= 1/grr. Our approach follows the narrative presented in Ref. [106, 117] 9. We

8However, we use tilded quantities and non tilded quantities alternatively in the discusssion.
9Ref. [117] provides the initial steps of the derivation of Lyapunov exponent, emphasizing

the selection of a well-defined time coordinate. The subsequent steps are detailed in Ref. [106],
introducing a concise formula expressing the principal Lyapunov exponent λ in terms of the second
derivative of the effective potential for radial motion. It is crucial to note the metric signature
difference between Ref. [106] and our approach. Our metric signature is (−1,+1,+1,+1), while
in their paper, it is (+1,−1,−1,−1). This leads to an overall negative sign in front of V ′′

r in the
expression for the Lyapunov exponent.
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consider particle motion in the background of a static, stationary, and spherically
symmetric spacetime, characterized by the metric (for our application, the HSV met-
ric is given by Eq. 2.3),

gµνdx
µdxν = gttdt

2 + grrdr
2 + gθθdθ

2 + gφφdφ
2 (3.1)

We narrow our focus to unstable circular geodesics lying on the equatorial hy-
perplane with θ = π/2, reducing the problem to a system with a two-dimensional
phase space. The Lagrangian governing this scenario is given by

2L = gµν ẋ
µẋν

= gttṫ
2 + grrṙ

2 + gφφφ̇
2.

(3.2)

Here, dots and primes represent derivatives with respect to the proper time τ and
the radial coordinate r, respectively. The generalized momenta pµ = ∂L/∂xµ are
expressed as

pt = gttṫ = −En = const,

pφ = gφφφ̇ = L = const,

pr = grrṙ,

(3.3)

The inversion of these momenta for φ̇ and ṫ yields

φ̇ =
L

gφφ
ṫ = −En

gtt
(3.4)

The Hamiltonian is expressed as

2H = 2(ptṫ+ pφφ̇+ prṙ − L)
= gttṫ

2 + grrṙ
2 + gφφφ̇

2

=
L2

gφφ
+

E2
n

gtt
+ grrṙ

2 = δ1 = const.

(3.5)

Here, δ1 = −1, 0 for time-like and null geodesics, respectively. The radial motion is
described by

ṙ2 + Veff (r) = 0, (3.6)

where the constant En is interpreted as the energy and the energy per unit mass
for massless and massive particles, respectively. Here, we introduce the effective
potential,

Veff (r) =
1

grr

[
L2

gφφ
+

E2
n

gtt
− δ1

]
. (3.7)

In the absence of anisotropic time scaling, this expression reduces to the effective
potential introduced in [106], employed in subsequent studies like [87, 110, 111] for
exploring the phase structure of black holes in Anti-de Sitter (AdS) spacetimes.
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Circular orbits, where r is constant, are characterized by V ′
eff(r) = 0. Solving

this equation provides the radius of the orbit. Circular orbits for which V ′′
eff(r) < 0

are deemed unstable. Perturbing such an orbit with a slight increase in energy will
lead it to either plunge into a black hole or diverge towards infinity. Thus, the radius
of an unstable circular geodesic is determined by

V ′
eff(r) = 0, V ′′

eff(r) < 0. (3.8)

Utilizing Eqs. 3.5 and 3.7, the Hamiltonian can be expressed in terms of the effective
potential as

2H = grrVeff + δ1 +
p2r
grr

(3.9)

The equations of motion follow as

ṙ =
∂H
∂pr

=
pr
grr

ṗr = −∂H
∂r

= −1

2
g′rrVeff −

1

2
grrV

′
eff +

1

2

g′rr
g2rr

p2r

(3.10)

Linearizing the equations of motion around a circular orbit with a constant radius
r = rc and using the requirements Veff = V ′

eff = 0, we obtain

δṙ =
δpr

grr(rc)

δṗr = −1

2
grr(rc)V

′′
eff(rc)δr

(3.11)

We express the Lyapunov exponent in coordinate time, which corresponds to the
time measured by an observer located far from the black hole 10. The Jacobian for
the transformation between proper time and coordinate time is given by dt/dτ = ṫ.
In terms of the coordinate time t, the equations take the form

d

dt

(
δr

δpr

)
= K

(
δr

δpr

)
(3.12)

10The utility of Lyapunov exponents, while apparent, presents discomforting limitations within
the framework of general relativity. Primarily, as the Lyapunov exponents vary from orbit to orbit,
they lack the broad surveying capability to capture the collective behavior of all orbits, as achieved
by fractal methods. Additionally, the Lyapunov exponents measure the deviation of two neighboring
orbits in time, making them heavily dependent on the chosen time coordinate. Given the relativity
of time, this dependence can lead to erroneous results, including zero Lyapunov exponents for
genuinely chaotic systems [118–123]. Notably, topological measures of chaos, such as fractals, are
coordinate-invariant and unaffected by the relativism of space and time [121, 122, 124]. In instances
where a preferred time direction exists, as in the case of a Schwarzschild black hole with a timelike
Killing vector, the ambiguity of time can be mitigated. As argued in Ref. [117], from an observation
position asymptotically far from the black hole, a well-defined time coordinate can be employed. As
long as all timescales are conscientiously compared within the same coordinate system, meaningful
comparisons can be derived.
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Figure 2. The effective potential Veff governing the motion of massive particles in HSV
spacetime is depicted. Left : Lifshitz case θ = 0. Right: HSV case θ = −1/2. In both
instances, the spacetime parameters are set to k = rF = Z0 = Φ0 = 1, with d = 3,
Ωkd = 16πG, z = 3/2 and Q̃ = 0.01. Without loss of generality, particle properties are
chosen as En = 1 and L = 20l. The blue dot on the plot corresponds to an unstable circular
orbit. Notably, the presence of an unstable circular orbit is contingent on the size of the
black hole. For black holes with substantial sizes, there is no maximum in Veff, indicating
the absence of an unstable circular orbit.

where K is the linear stability matrix with components

K =

 0
1

ṫ grr(rc)

− 1

2 ṫ
grr(rc)V

′′
eff(rc) 0

 (3.13)

The principal Lyapunov exponent λ corresponds to the eigenvalue of the matrix K

[106],

λ =

√
−V ′′

eff(rc)

2 ṫ2
(3.14)

3.1 Timelike geodesics (massive particles)

In the context of HSV black hole spacetime, both stable and unstable circular
geodesics are possible for massive particles. Our focus here centers on the investiga-
tion of unstable time-like circular geodesics, given their connection to the conjectured
universal upper bound on Lyapunov exponents [102, 104]. Specifically, we delve into
the Lyapunov exponent of unstable circular geodesics for massive particles possess-
ing a defined angular momentum and energy. The effective potential governing the
motion of these massive particles is expressed as follows (follows from Eq. 3.7):

Veff (r) =
1

grr

[
L2

gφφ
+

E2
n

gtt
+ 1

]
, (3.15)
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Upon substituting the metric components grr, gφφ, and gtt from Eq. 2.3 and incorpo-
rating Eq. 2.16 into the blackening factor f(r), we find that Vr is closely tied to the
HSV parameter θ, the Lifshitz exponent z, and the black hole radius rh, among other
spacetime parameters that are not relevant to our current analysis. The effective po-
tential exhibits key features of timelike geodesics, revealing turning points and the
locations of stable or unstable equilibria. In Figure 2, we show the effective potential
energy experienced by massive particles in HSV black holes for various values of rh,
while maintaining constant spacetime and particle parameters. We explore two sce-
narios: one with a vanishing θ value, corresponding to the Lifshitz case, and another
with a non-zero θ value indicative of HSV. The maxima of the effective potential sig-
nify the presence of unstable circular orbits on the equatorial plane. Remarkably, the
figure demonstrates that, regardless of the θ values, if rh exceeds a critical threshold,
unstable time-like circular geodesics cease to exist, implying the disappearance of
their instability (λ → 0).

Now, we aim to rewrite the expression for the Lyapunov exponent, specifically
tailored for timelike geodesics (massive particles), in terms of the effective potential.
The conditions for the existence of circular orbits, Veff(rc) = V ′

eff(rc) = 0, lead to the
following expression for the particle’s energy and angular momentum:

E2
n =

g′φφ(rc)g
2
tt(rc)

gφφ(rc)g′tt(rc)− g′φφ(rc)gtt(rc)

L2 =
g2φφ(rc)g

′
tt(rc)

g′φφ(rc)gtt(rc)− gφφ(rc)g′tt(rc)

(3.16)

The condition E2
n > 0 imposes:

gφφ(rc)g
′
tt(rc)− g′φφ(rc)gtt(rc) > 0 (3.17)

By employing Eq. 3.4 and Eq. 3.16 in Eq. 3.15 and subsequently substituting it into
Eq. 3.14, we obtain the refined expression for the Lyapunov exponent for timelike
geodesics:

λ =

√
−V

′′
eff(rc)

2ṫ2
=

1√
2

√
g′φφ(rc)gtt(rc)− gφφ(rc)g′tt(rc)

g′φφ(rc)
V

′′
eff(rc) (3.18)

It is noteworthy that, according to Eq. 3.17, the conditions derived from the existence
of a circular orbit, combined with the requirement for an unstable orbit, V ′′

eff(r) < 0,
ensure that the Lyapunov exponent for timelike geodesics is always real when the
orbit is unstable.

3.2 Null like geodesics (massless particles)

Now, let us rewrite the expression for the Lyapunov exponent concerning nulllike
geodesics. For photons propagating in the background of HSV spacetime, the effec-
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tive potential, as derived from Eq. 3.7, is given by:

Veff (r) =
1

grr

[
L2

gφφ
+

E2
n

gtt

]
, (3.19)

The circular orbit conditions Veff(rc) = V ′
eff(rc) = 0 yield:

E2
n

L2
= − gtt(rc)

gφφ(rc)
(3.20)

By employing Eq. 3.4 and Eq. 3.20 in Eq. 3.19 and subsequently substituting it into
Eq. 3.14, we deduce that the Lyapunov exponent for nulllike geodesics is:

λ =

√
−V

′′
eff(rc)

2ṫ2
=

1√
2

√
gtt(rc)gφφ(rc)

L2
V

′′
eff(rc) (3.21)

Eq. 3.20 implies that gtt(rc)gφφ(rc) > 0, which, combined with the requirement for
an unstable orbit, V ′′

eff(r) < 0, ensures that λ is always positive for unstable photon
orbits. Note that Eq. 3.18 and Eq. 3.21 reduce to their respective forms in AdS
spacetime when there is no anisotropic time scaling.

4 Lyapunov exponent and phase structure

Now that we have presented all the details of thermodynamics and geodesic motion,
we are prepared to explore the phase structure of the black hole using the Lyapunov
exponent. Our focus lies on black hole phase transitions in the canonical ensemble,
particularly the SBH to LBH phase transition, reminiscent of the vdW fluid-gas phase
transition. As previously investigated, the Lyapunov exponent can characterize the
phase transitions of charged black holes in AdS spacetime [87]. Here, we extend
this method to Lifshitz and HSV black holes, the generalization of AdS spacetime.
Without loss of generality, we consider a massive particle with an angular momentum
of L = 20l and energy En = 1 throughout the article.

4.1 Time like geodesics (massive particles)

To understand the relation between the Lyapunov exponent and the HSV black hole
phase transition, we initially investigate the correlation between the event horizon
and the Lyapunov exponent of timelike geodesics in the background metric. In order
to visualize the λ− rh relationship, we express λ as follows (substituting the second
relation in Eq. 3.16 into Eq. 3.18):

λ =
1√
2

√
g2φφ(rc)g

′
tt(rc)

g′φφ(rc)L
2

V
′′
eff(rc) (4.1)
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We observe that the Lyapunov exponent is closely related to the radius of circular
unstable geodesics rc, determined by V ′

eff(rc) = 0. However, there is no analytic
expression for rc, necessitating numerical investigation. The radius of the unstable
geodesic depends on rh, Q, and two other relevant spacetime parameters z and θ

(other spacetime parameters are not relevant for our study). Therefore, the value of
the Lyapunov exponent λ depends on the event horizon radius rh, black hole charge
Q, as well as z and θ.

The 3D plot in Fig. 3 depicts log100(λ + 1) as a function of Q̃ and r̃h, with
the exclusion of regions where no black holes exist, as determined by the condition
that the Hawking temperature (T ) should satisfy T ≥ 0. The plot illustrates that
λ diverges as rh approaches zero. Additionally, λ tends to approach zero at specific
values of Q̃ and r̃h. This outcome aligns with the behavior observed in the RN-
AdS case [87]. Hence, we deduce that the Lyapunov exponent associated with the
geodesics of massive particles in charged black holes within HSV spacetime manifests
characteristics similar to those observed in AdS spacetime. It is noteworthy that,
even though we presented a 3D plot for θ = 0, the observed behaviour remains
consistent for non-zero θ values, as evidenced by the 2D plot (Fig. 4).

We present the cross-section of the 3D plot in Fig. 4 to investigate the influence
of the black hole charge (Q) and HSV parameter (θ) on the Lyapunov exponent (λ).
In the left panel, we vary Q while keeping other spacetime parameters fixed (Lifshitz
case, θ = 0; however, similar results apply to HSV scenarios). The impact of Q on λ

is notably pronounced for lower values of the event horizon radius (rh), and the curves
converge as rh increases. The right panel of Fig. 4 illustrates the effect of θ on λ while
maintaining other spacetime parameters constant. Here, the influence of θ becomes
more apparent for larger values of rh. In both cases, λ tends to approach zero as rh
exceeds a certain threshold, indicating the absence of unstable timelike geodesics for
black holes beyond this critical rh. This behavior aligns with the disappearance of
the extreme point in the effective potential, as depicted in Fig. 2, where V ′′

eff = 0 = λ

at a specific rh. A common feature is observed, wherein the finite domain of rh for
black holes with unstable circular orbits is determined by the lower extremal black
hole limit and the upper limit set by the existence of these unstable orbits. Notably,
this domain exhibits significant variation with θ values, with the range expanding
as θ transitions from positive to negative values, indicating an increase in unstable
orbits. Throughout this study, we have chosen the convenient value θ = −1/2 to
exemplify hyperscaling violation.

In our analysis, we explore the relationship between the Lyapunov exponent and
the Hawking temperature. This connection is established by numerically solving the
Hawking temperature Eq. 2.9 to obtain r̃h(T̃ ) and then substituting this expression
into Eqn 3.18 for λ. The resulting λ − T̃ plot is remarkably analogous to the free
energy plot (Fig. 1). Recall that the free energy exhibits multivalued behavior below
the critical point (Q < Qcrit) within a certain temperature range. This behavior
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Figure 3. Three-dimensional plot illustrating log100(λ + 1) as a function of Q̃ and r̃h for
massive particles in the Lifshitz case (θ = 0). The spacetime parameters are fixed with
k = rF = Z0 = Φ0 = 1, d = 3, Ωkd = 16πG, and z = 3/2. The exclusion of the no
black hole region is enforced based on the positivity of the Hawking temperature, ensuring
extremal black hole conditions.
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Figure 4. The cross-section log100(λ + 1) − r̃h derived from the 3D plot with fixed Q

values. Left: Illustrating the impact of charge Q on λ while maintaining other spacetime
parameters constant (k = rF = Z0 = Φ0 = 1, d = 3,Ωkd = 16πG, z = 3/2) in the Lifshitz
case (θ = 0). The selected Q variation is Q = (0.1Qcrit, 0.5Qcrit, 0.9Qcrit). The qualitative
behavior holds for all admissible z and θ values. Right: Demonstrating the influence of HSV
parameter θ on λ while keeping other spacetime parameters fixed (k = rF = Z0 = Φ0 = 1,
d = 3,Ωkd = 16πG, z = 3/2, Q = 0.9Qcrit). The chosen θ variation is θ = (−1/2, 0, 1/2).
The qualitative trends remain consistent across different θ values.
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Figure 5. Lyapunov exponents for massive particles plotted against the Hawking temper-
ature for two distinct charge regimes: Q = 0.1Qcrit < Qcrit (top row) and Q = 1.1Qcrit >

Qcrit (bottom row). The left panel corresponds to the Lifshitz case with θ = 0, while the
right panel represents the HSV case with θ = −1/2. The fixed spacetime parameters in-
clude (k = rF = Z0 = Φ0 = 1, d = 3,Ωkd = 16πG, z = 3/2). The phase transition from
Small Black Hole to Large Black Hole occurs at T̃ = T̃p. In all cases, λ initiates from a finite
value at T̃ = 0 and reaches zero after a certain temperature, though this is not displayed
in every plot for the sake of a clear presentation. The plots are obtained numerically, and
any discontinuity near the joining points is a result of numerical instability and limitations
in the number of iterations to access those points. Otherwise, the connecting plots are
continuous.

signifies a first-order phase transition, where the system, initially in the SBH phase
at low temperatures (T̃ < T̃p), transitions to the LBH phase at T̃p due to a state with
lower free energy. Above the critical point Q > Qcrit, the free energy is single-valued.
Intriguingly, this phase transition behavior is mirrored by the Lyapunov exponent of
unstable geodesics, as illustrated in Fig 5. We analyze two cases separately: below
and above the critical point. For Q < Qcrit (upper row in Fig 5), the Lyapunov
exponent exhibits multivalued behavior between T̃1 and T̃2, corresponding to coex-
isting SBH, LBH, and IBH phases. In SBH, λ initially rises to a maximum and then
declines as T̃ approaches T̃2, while for IBH and LBH, λ increases and decreases, re-
spectively, with rising T̃ from T̃1. Notably, the Lyapunov exponent tends to zero as
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Figure 6. ∆λ̃ vs t plot for massive particles. Left: Lifshitz case, θ = 0. Right: HSV case,
θ = −1/2. The red stars represent data points obtained from numerical calculations, and
the blue solid line represents the fitted curve.

T̃ increases to a certain value. Although the qualitative behavior remains consistent,
the quantitative aspects are influenced by z and θ. Conversely, when Q > Qcrit, λ
is single-valued, indicating a unique black hole solution. These findings suggest that
λ as a function of T̃ provides insights into the phase structure of Lifshitz and HSV
black holes, with consistent behavior observed across various permissible values of θ
and z.

Given that the λ− T̃ plot exhibits black hole phase transition properties similar
to the behavior of free energy, it prompts the natural question of how to quantify the
black hole phase transition using the Lyapunov exponent. Remarkably, the SBH-
LBH phase transition can be captured by the difference in Lyapunov exponent. At
the transition point T̃p, the Lyapunov exponent takes values λs for the small BH
phase and λl for the large BH phase. This implies a discontinuous change in the
Lyapunov exponent, signifying a first-order phase transition at T̃p. It is noteworthy
that the phase transition temperature T̃p varies with black hole parameters, including
Q, z, and θ. The difference in Lyapunov exponent, ∆λ = λl − λs, serves as an order
parameter. This parameter is nonzero during the first-order phase transition and
becomes zero at the critical point, highlighting its role as an order parameter. We
are particularly interested in the near-critical behavior of the Lyapunov exponent,
where Tp = Tc and λs = λl = λc, marking the transition from a first-order to a
second-order phase transition.

Critical exponents play a pivotal role in determining the qualitative behavior of
a system in the vicinity of its critical point. To explore the critical behavior of the
Lyapunov exponent for timelike geodesics around HSV black holes, we analyze the
behavior of ∆λ/λc versus T̃p/Tc in Fig 6 near the critical point. For simplicity, we
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Figure 7. Three-dimensional plot depicting log100(λ) as a function of Q̃ and r̃h for massless
particles in the Lifshitz case (θ = 0). The spacetime parameters are fixed with k = rF =

Z0 = Φ0 = 1, d = 3, Ωkd = 16πG, and z = 3/2. The exclusion of the no black hole region
is enforced based on the positivity of the Hawking temperature, ensuring extremal black
hole conditions. Notably, unlike AdS spacetime, the unstable null geodesics cease to exist
beyond a certain rh value. The Lyapunov exponent crosses zero in the {Q, rh} plane in the
λ = 0 line and continues further, taking negative values for larger rh values. However, since
we do not consider negative λ values in our study, we truncate that portion.

use ∆λ̃ and t to substitute ∆λ/λc and T̃p/Tc respectively. The critical exponent δ

associated with the order parameter ∆λ̃ is defined as follows:

∆λ̃ = α|t− 1|δ (4.2)

We numerically establish this relationship and find that δ ∼ 1/2. Specifically, for the
Lifshitz case with θ = 0, we obtain α = 8.04764 and δ = 0.518843, while for the HSV
case with θ = −1/2, we find α = 8.24289 and δ = 0.515627. Our results demonstrate
that the critical exponent of ∆λ is identical to that of the order parameter in the
vdW fluid, as predicted by mean field theory.

4.2 Null like geodesics (massless particles)

In this subsection, we explore the phase transition of HSV black hole using the
Lyapunov exponents of null geodesics. Regardless of the geodesic type under consid-
eration, our analysis demonstrates that the Lyapunov exponent remains a reliable
probe for phase transitions. Similar to the case of massive particles, our study of
massless particles is confined to a specific range of rh values. The lower limit is set
by the extremal black hole condition ensuring the existence of a black hole solution.
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Figure 8. The cross-section of log100(λ)− r̃h derived from the 3D plot with fixed Q values
for massless particles. Left: Illustrating the impact of charge Q on λ while maintaining
other spacetime parameters constant (k = rF = Z0 = Φ0 = 1, d = 3,Ωkd = 16πG, z = 3/2)

in the Lifshitz case (θ = 0). The selected Q variation is Q = (0.1Qcrit, 0.5Qcrit, 0.9Qcrit).
The qualitative behavior holds for all admissible z and θ values. Right: Demonstrating
the influence of the HSV parameter θ on λ while keeping other spacetime parameters fixed
(k = rF = Z0 = Φ0 = 1, d = 3,Ωkd = 16πG, z = 3/2, Q = 0.9Qcrit). The chosen θ variation
is θ = (−1/2, 0, 1/2). The qualitative trends remain consistent across different θ values.
Notice that the trend is reversed in the right panel compared to the massive case (see Fig.
4).

Conversely, the upper limit is defined by the cessation of photon orbits, a departure
from RN-AdS spacetime, where photon orbits are guaranteed for all feasible black
hole solutions [87]. In the HSV spacetime, photon orbits become stable beyond a
certain threshold of rh values. However, our study exclusively focuses on unstable
photon orbits.

For a comprehensive understanding of the behavior of Lyapunov exponent, we
initially present a 3D plot of log100 λ as a function of Q̃ and r̃h in Figure 7 for the
Lifshitz case (θ = 0). The regions devoid of black hole solutions, determined by
T > 0, have been excluded. The plot reveals that λ diverges as r̃h approaches zero.
However, due to the absence of unstable photon orbits beyond a certain threshold
value of the horizon radius, the Lyapunov exponent λ eventually approaches zero.
This behavior mirrors that observed in the case of massive particles, distinguishing it
from photon orbits in RN-AdS black holes, where λ saturates to 1 as Q̃ or r̃h tends to
infinity. In Figure 8, we provide a cross-section of the 3D plot to elucidate the impact
of variations in Q and θ on λ. In the left panel, the effect of Q is evident for lower rh
values, converging as rh increases. In the right panel, we illustrate the impact of the
HSV parameter for different θ values. In contrast to the massive case, λ decreases as
θ varies from positive to negative. This suggests that the HSV parameter θ influences
massive and massless particles differently.
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Figure 9. Lyapunov exponents for massless particles plotted against the Hawking temper-
ature for two distinct charge regimes: Q = 0.8Qcrit < Qcrit (top row) and Q = 1.1Qcrit >

Qcrit (bottom row). The left panel corresponds to the Lifshitz case with θ = 0, while the
right panel represents the HSV case with θ = −1/2. The fixed spacetime parameters in-
clude (k = rF = Z0 = Φ0 = 1, d = 3,Ωkd = 16πG, z = 3/2). The phase transition from
Small Black Hole to Large Black Hole occurs at T̃ = T̃p.
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Figure 10. ∆λ̃ vs t̃ plot for massless particles. Left: Lifshitz case, θ = 0. Right: HSV
case, θ = −1/2. The red stars represent data points obtained from numerical calculations,
and the blue solid line represents the fitted curve.
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Inserting r̃h(T̃ ) into Eq. 3.21 yields λ as a function of T̃ , as depicted in Figure
9. Similar to the massive case, there exists a terminating temperature, at which the
unstable null-like circular orbit disappears, and λ becomes zero. For Q < Qcrit, λ is
multivalued for the temperature range T̃1 < T̃ < T̃2, indicating the coexistence of
three black hole solutions. For Q > Qcrit, λ monotonically decreases and eventually
reaches zero. Additionally, the discontinuous change in the Lyapunov exponent ∆λ̃

is plotted against the temperature T̃ for massless particles in Figure 10, indicating
that ∆λ can serve as an order parameter. Near the critical temperature, we find
∆λ̃ = α|t−1|δ, confirming that the critical exponent of ∆λ for the null geodesic case
is also 1/2. Numerically, for the Lifshitz case θ = 0, we obtained α = 6.70366 and
δ = 0.515518, and for the HSV case θ = −1/2, we found α = 6.1173 and δ = 0.50626.
Thus, it is reasonable to suppose that the critical exponent of ∆λ̃ is independent of
the Lifshitz exponent z, the HSV parameter θ, and the geodesic type, provided the
black hole undergoes an SBH-LBH phase transition.

5 Discussion

In this article, we investigated the relationship between black hole thermodynamics,
specifically phase transitions, and black hole chaos, characterized by the Lyapunov
exponent, in the background of Lifshitz and of HSV spacetimes. The Lyapunov ex-
ponent plays a crucial role in understanding chaotic systems, providing insights into
the divergence and convergence rates of trajectories near the black hole. The study
of chaos within the context of black hole physics has garnered significant interest in
recent years. On the other hand, an extension of the Gauge/Gravity duality has been
witnessed in the construction of gravity models conjectured to be dual to condensed
matter systems with anisotropic scaling. Our research aims to interconnect these
two aspects of black hole physics, particularly in the realm of black hole thermody-
namics. We demonstrate that the Lyapunov exponent effectively characterizes the
phase structure of black holes in both hyperscaling and HSV spacetimes, similar to
AdS spacetime.

By using the Lyapunov exponent, a measure reflecting the inverse instability
timescale associated with geodesic motion, we have illustrated that the phase con-
figuration within hyperscaling (violating) spacetime is determined by parameters
governing circular geodesics. Our primary focus has been on unraveling the details
of timelike and null geodesics of particles, aiming to probe the phase structure char-
acterizing black holes within hyperscaling (violating) spacetimes. Given the inherent
asymmetry in the scaling of space and time, a careful analysis of geodesics becomes
necessary. Therefore, first we have presented a straightforward derivation of the Lya-
punov exponent in Section 3, elucidating its connection to the effective potential of
circular geodesics. When the space and time undergo equal scaling, our derivation
agrees with the established results from prior studies.
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In our investigation, we specifically focused on the thermodynamics of the spher-
ical black holes with 1 ≤ z ≤ 2 and arbitrary θ in the canonical ensemble. These
black holes exhibit a first-order transition between the small black hole phase and
the large black hole phase, similar to the liquid-gas phase transition observed in vdW
fluids. Our observations reveal that, when the black hole charge is below the critical
value (determined by black hole parameters, including z and θ), the Lyapunov expo-
nents, plotted against Hawking temperature, show three branches, corresponding to
three coexisting black hole phases. Conversely, when the charge surpasses the critical
threshold, the Lyapunov exponents become single-valued functions of temperature,
aligning with one black hole phase. Notably, during the first-order phase transition,
the discontinuity in the Lyapunov exponent (∆λ) serves as an order parameter, ef-
fectively characterizing the black hole phase transition. Remarkably, we find that
∆λ exhibits a critical exponent of 1/2 at the critical point. Given the difficulty of
obtaining analytical solutions, we opted for a numerical approach to perform the
necessary calculations.

Our findings further validate the proposed connection between Lyapunov expo-
nents and phase transitions in charged black holes extending its applicability to a
broader context, beyond AdS spacetime. However, in the selected model, the gauge
potentials A and B remain inert in thermodynamics, serving solely to uphold the
structure of the asymptotic spacetime and the geometry of the internal space, with
their associated charges, such as QF and QH , held fixed. Any modification to these
charges would alter the symmetries and geometry of the dual field theory, signif-
icantly impacting the holographic interpretation. This observation motivates the
exploration of holographic thermodynamics in the realm of HSV spacetime, an area
of recent interest in the community [116]. Subsequent analysis could extend to estab-
lishing connections between holographic thermodynamics and Lyapunov exponents.
An intriguing starting point for this study could involve connecting holographic ther-
modynamics and Lyapunov exponents, beginning with the AdS spacetime itself.
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