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Abstract

Employing the free energy landscape, we study the phase transition and its dynamics for a class

of regular black holes in Anti-de Sitter spacetime governed by the coupling of non-linear elec-

trodynamics, which reduces to Hayward and Bardeen solutions for particular values of spacetime

parameters. The Fokker-Planck equation is solved numerically by imposing the reflecting boundary

condition and a suitable initial condition, using which, we investigate the probabilistic evolution of

regular AdS black holes. In this approach, the on-shell Gibbs free energy is treated as a function of

the radius of the event horizon, which happens to be the order parameter of the phase transition.

The numerical solution is also obtained for the absorbing boundary condition. The dynamics of

switching between the coexistence small black hole phase and large black hole phase due to the

thermal fluctuation is probed by calculating the first passage time. The effect of temperature on

the dynamical process is also investigated.
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I. INTRODUCTION

One of the most intriguing aspects that ushered new research interests in recent years is

the intrinsic connection between gravity and thermal systems. It is a well-established notion

that black holes are not merely strong gravity objects but also possesses thermodynamic

properties. In the seminal work of Hawking and Bekenstein [1, 2], the temperature and

entropy were defined for a black hole system, which on the gravity side correspond to the

area of the event horizon and surface gravity, respectively. Moreover, the later developments

show that the black holes exhibit a rich class of phase transitions analogous to real-life

thermodynamic phenomena. In a specific scenario, the black hole thermodynamics gained

more attention, where the longstanding question about pressure and volume of the black

hole was discussed in the context of black hole thermodynamics [3, 4]. The thermodynamic

variable pressure was introduced via dynamical cosmological constant and volume from its

conjugate quantity. With this extended phase space, charged AdS black holes exhibit phase

structure similar to that of van der Waals fluid [5–7]. A first-order transition between a

small black hole (SBH) phase and a large black hole phase (LBH) is observed analogous to

a liquid-gas transition in conventional thermodynamics.

A new step forward in understanding the black hole phase transition is the introduction

of a free energy landscape aided with stochastic Fokker-Planck equation to analyse the

kinetics and dynamics of the transition process [8]. In the context of black hole physics, the

idea was originally developed to uncover the kinetics of the Hawking-Page transition. Later

it was generalised to charged AdS black hole, where the transition between a metastable

state and a stable state was analysed [9]. The dynamics of the specific case of transition

along the coexistence line is studied for the five-dimensional Gauss-Bonnet black hole in

Ref. [10]. Here, the transition is between the stable SBH and LBH states. The results

show that the system can make a transition from the initial state to other stable state and

switch back. Soon, the formulation has been discussed in different contexts [11–13]. The

dynamic property of triple point [14], effect of dark energy [15], in Kerr-AdS spacetime [16],

in charged dilaton black holes [17], four-dimensional Gauss-Bonnet black hole [18] are the

further applications of the free energy landscape in black hole physics. It is important to

stress that the off-shell Gibbs free energy plays a vital role in these investigations, which is

the driving force for the black hole phase transition and it is treated as a function of the
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horizon radius, which is the order parameter of the transition.

In general relativity, the physical singularity at the centre of the black hole exists due to

the Penrose and Hawking theorems [19, 20]. However, there are several methods to bypass

this singularity and to obtain singularity free black hole solutions. One of such interesting

class of such solutions is governed by the coupling of non-linear electrodynamics [21, 22]. In

these solutions, the spacetime is free from a singularity when the mass parameter is solely

obtained from a non-linear electrodynamics source. In fact, these regular solutions are often

interpreted as the gravitational field of a non-linear electric or magnetic monopole. This

formulation has special cases which are important in the literature, namely the Bardeen

and Hayward solutions [23, 24]. These black holes in AdS spacetime exhibit phase structure

similar to van der Waals fluid [25, 26]. In the present work, we investigate the dynamics of

these phase transitions using the Gibbs free energy landscape.

The organisation of the paper is as follows. In the next section (II), we present the

thermodynamics and phase transition of the Hayward solution. In the same section, we

probe the dynamics of that transition using Gibbs free energy landscape. In section III we

carry out a similar investigation for the Bardeen solution. The results are summarised in

section IV with discussions.

II. HAYWARD ADS BLACK HOLE

A. Thermodynamics and phase transition

We consider the black hole solutions derived from Einstein gravity minimally coupled to

nonlinear electrodynamics with negative cosmological constant Λ, which are governed by

the action [21],

I =
1

16πG

∫

d4x
√

−ĝ[R− L (F) + 2Λ]. (1)

In the above equation, R and ĝ are the Ricci scalar and the determinant of the metric tensor,

respectively. The Lagrangian density L(F) is a function of F = FµνF
µν with Fµν = 2∇[µAν],

the field tensor of nonlinear electrodynamics. The Hayward-AdS black hole spacetime is due

to the Lagrangian density,

L (F) =
12

α

(αF)3/2

(

1 + (αF)3/4
)2 , (2)
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with α > 0 which has the dimension of length squared. The non-vanishing components of

Fµν in a spherically symmetric spacetime are Ftr and Fθφ. For the case of pure magnetic

charge, only Fθφ survives. Then the corresponding Maxwell tensor has only one non-zero

component,

Fθφ = −Fφθ = −Qm sin θ. (3)

It is easy to read the gauge potential and the Maxwell invariant for this field as,

Aµ = Qm cos θδφµ, F =
2Q2

m

r4
. (4)

The constant Qm is the magnetic monopole charge of the nonlinear electrodynamics. The

metric for the Hayward AdS spacetime in four-dimension reads [21],

ds2 = −f(r)dt2 +
1

f(r)
dr2 + r2dΩ2

2, (5)

where dΩ2
2 = dθ2 + sin2 θdφ2, is a 2-dimensional unit sphere, and the corresponding metric

function is given by,

f(r) =

(

1− 2Mr2

r3 + g3
− Λr2

3

)

, (6)

in which M is the mass of the black hole and g the parameter related to the magnetic charge

Qm, as Qm = g2/
√
2α.

Now, we proceed to discuss the extended thermodynamics of the black hole, where the

pressure P is related to the dynamic cosmological constant Λ as [3, 4],

P = − Λ

8π
. (7)

In this description, the mass M of the black hole is treated as enthalpy rather than energy.

It can be expressed in terms of horizon radius r+, by using the condition, f(r+) = 0,

M =
r+
2

+
4

3
πP (g3 + r3+) +

g3

2r2+
. (8)

The Hawking temperature T is associated with the surface gravity κ, which is obtained as,

T =
κ

2π
=

f ′(r)

4π

∣

∣

∣

∣

r=r+

=
2Pr4+
g3 + r3+

− g3

2πr+ (g3 + r3+)
+

r2+
4π (g3 + r3+)

. (9)
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The first law of thermodynamics can be written as,

dM = TdS +ΨdQm + V dP +Πdα, (10)

where Ψ and Π are the conjugate variables corresponding to the magnetic charge Qm and

parameter α, respectively. Unlike the charged AdS black holes, the entropy and volume of

the Hayward black hole have the following modified form,

S =

∫

dM

T
= 2π

(

r2+
2

− g3

r+

)

, (11)

V =

(

∂M

∂P

)

S,Qm,α

=
4

3
π
(

g3 + r3+
)

. (12)

The equation of state of the system is,

P =
g3

4πr5+
+

g3T

2r4+
− 1

8πr2+
+

T

2r+
. (13)

The Hayward black hole exhibits a vdW like phase transition between a large black hole

phase (LBH) and small black hole phase (SBH) [25]. The critical point of this first order

phase transition is governed by the monopole charge parameter g, which is given by,

TcH =

(

5
√
2− 4

√
3
) (

3
√
6 + 7

)2/3

4× 25/6πg
, (14)

PcH =
3
(√

6 + 3
)

16× 22/3
(

3
√
6 + 7

)5/3
πg2

. (15)

B. Gibbs free energy landscape

The signature of the first-order phase transition of the black hole can be clearly seen in

the swallowtail behaviour of the Gibbs free energy. Therefore, free energy is a powerful tool

to investigate the thermal dynamic phase transition of the black hole. For Hayward AdS

black hole, the Gibbs free energy is,

G = M − TS =
8g3r3+

(

10πPr2+ + 3
)

+ 2g6
(

8πPr2+ − 3
)

− 8πPr8+ + 3r6+
12r2+ (g3 + r3+)

. (16)

The swallowtail behaviour appears for the pressure below the critical value PcH and the

first derivative of G is discontinuous in such conditions as it corresponds to a first order

phase transition. The behaviour disappears at the critical pressure where the first derivative

becomes continuous and the corresponding transition is second order.
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In the free energy landscape, we consider a canonical ensemble with a fixed temperature

TE . The black hole states in this ensemble have a different radius at the specified tem-

perature. In the equilibrium state, the black hole temperature is identical to the ensemble

temperature. In the free energy landscape, the Gibbs free energy is expressed as,

GL = M − TES =
g3

(

8πPr2+ + 12πr+T + 3
)

+ r3+
(

8πPr2+ − 6πr+T + 3
)

6r2+
. (17)

The behaviour of Gibbs free energy with the horizon radius for a fixed value of pressure

and temperature gives information about the SBH-LBH first-order transition. We study

this behaviour in Fig 1 using the Eqns. 16 and 17. The swallowtail behaviour is displayed

in Fig. 1(a), which gives the coexistence temperature T0 for a given coexistence pressure

P0. We seek this method to obtain the coexistence temperatures for different coexistence

pressures, as the analytical expression for the coexistence curve is not always feasible for

complicated black hole spacetimes. In fact, one can obtain a numerical fit for the coexistence

curve using this method. Here we have taken P = 0.6PcH. As the heat capacity governs

the stability of the black hole phase, the solid blue and solid red lines with positive specific

heat represents stable SBH and LBH phases, respectively, whereas, the dashed black line

with negative specific heat corresponds to the unstable intermediate black hole phase. For a

fixed pressure P = 0.6PcH, the system evolves with an increase in the temperature, through

the path A−B −E −G− J , by choosing the least values of Gibbs free energy. The stable

LBH below T3 and stable SBH above T3 are metastable states which are globally unstable.

In the next series of plots, the Gibbs free energy is plotted as a function of horizon

radius, which is the order parameter for the transition. Not all points in the GL − r+ curve

correspond to the physical states of black holes; rather, only the extremal points do. In

this meaning, GL is termed as off-shell Gibbs free energy or generalised Gibbs free energy.

For temperature T1, there is only one physical black hole state (A in Fig. 1(b)), which is

an SBH state. At temperature T2 there exist three extremum, B , C, and D (Fig. 1(c)).

The local maximum D is an unstable intermediate black hole state. The local minimum

B and C correspond to the stable SBH and a metastable SBH state, respectively. As the

system prefers a lowest Gibbs free energy state, the black hole will choose state B at this

temperature. As the temperature is increased to a value T3, the depth of the basins become

equal, and both (E and E ′) correspond to stable states with equal priority. This is the

coexistence temperature, and the scenario corresponds to the first order SBH-LBH phase
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Figure 1: The Gibbs free energy plots with g = 1 and P = 0.06Pc. (a) The swallowtail behaviour of

Gibbs free energy, G vs T plot. The solid red, solid blue and dashed black lines correspond to SBH,

LBH and IBH phases, respectively. (b)-(f) are the off-shell Gibbs free energy GL vs rh plots. The

ensemble temperatures are taken as (b) T = 0.96Tco, (c) T = 0.99Tco, (d) T = Tco, (e) T = 1.02Tco

and (f) T = 1.08Tco, where Tco = 0.03071 is the coexistence temperature corresponding to the

pressure P = 0.06PcH.

transition. Further, an increase in temperature to T4 results in a stable LBH state at G and
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a metastable SBH state at H . At temperature T5, the system has only one physical state,

which is the stable LBH at J . The value of r+ at these basins correspond to the respective

horizon radius of the SBH or LBH phases at every temperature. As the physical states of

the black hole correspond to the vanishing first derivative of GL, from Eq. 17 we have,

1

2
− 2πT

(

g3

r2hs
+ rhs

)

− g3

r3hs
+ 4πPr2hs = 0, (18)

1

2
− 2πT

(

g3

r2m
+ rm

)

− g3

r3m
+ 4πPr2m = 0. (19)

1

2
− 2πT

(

g3

r2hl
+ rhl

)

− g3

r3hl
+ 4πPr2hl = 0. (20)

The value of horizon radii rhs of SBH phase, rhl of LBH phase and rm of the intermediate

phase can be obtained by using these conditions. For a given pressure, the double basin

behaviour of GL can be seen in a range of temperature Tmin < T < Tmax which can be

determined by using the condition ∂T/∂r+ = 0 in Eq. 9. The basins correspond to stable

states, which are separated by a finite-height barrier of the intermediate phase. However,

in the ensemble perspective, one stable state can transit into another stable state due to

thermal fluctuations. The dynamics of this probabilistic evolution of the system between a

SBH and LBH phase is characterised by the Fokker-Planck equation.

C. Dynamic properties of phase transition

In this section we will study the dynamics of the thermodynamic phase transition of the

black hole for the case of SBH-LBH transition, which corresponds to double wells with the

same depth in free energy landscape. In the following section we use r for r+ for simplicity.

1. Fokker-Planck equation and probabilistic evolution

A systematic analysis of thermodynamics and kinetics of black holes from Gibbs free

energy landscape can be done using Fokker Planck equation [9],

∂ρ(r, t)

∂t
= D

∂

∂r

(

e−βGL(T,P,r)
∂

∂r

(

eβGL(T,P,r)ρ(r, t)
)

)

, (21)

8



where β = 1/kBT with kB the Boltzmann constant, D is diffusion constant which is given

by D = kBT/ξ with ξ as dissipation coefficient and ρ(r, t) the probability distribution of

black hole states. We impose the following reflection and absorbing boundary conditions (at

r = r0) to solve the Fokker-Planck equation,

β∂rGL(T, P, r0)ρ(r0, t) + ∂rρ(r0, t) = 0 and ρ(r0, t) = 0, (22)

and the initial condition,

ρ(r, 0) = 1/(
√
πa)e−(r−ri)2/a2 , (23)

where ri are the radii of small and large black hole phases. We take ri as rhs and rhl as

we are focused on the transition between SBH and LBH at the coexistent temperature.

Here, a is a constant which determines the initial width of the probability distribution wave

packets, which does not influence the final results. Initially the black hole is chosen to be in

any one state, either SBH or LBH state. As the phase transition is possible at coexistent

temperature, it is expected that, with time evolution, there will be nonzero probability for

both states. In fact, this probability evolution due to fluctuating macroscopic variables is

governed by the Fokker-Planck equation. The stochastic fluctuating variable for the black

hole phase transition is the order parameter horizon radius. To be precise, the above equation

is a special case of Fokker-Planck equation known as the Smoluchowski equation.

First, we consider the reflection boundary condition, which preserves the normalisation of

probability distribution ρ(r, t), with the boundaries located at r = 0 and r = ∞. The time

evolution of the probability distribution for different initial conditions and temperatures are

depicted in Fig. 2. We have considered initial wave packet at SBH state by choosing r = rhs

and at LBH by letting r = rhl for two different coexistent temperatures corresponding to

P = 0.4PcH and P = 0.6PcH. We set the initial width of the Gaussian wave packet for

a = 0.1 for the convenience of numerical calculation. In Figs. 2(a) and 2(b) initially the

black hole is kept in SBH phase (t = 0). As the temperature increases, the wave packet

spreads to the LBH state, correspondingly reducing the probability distribution in the SBH

state. The distribution quickly becomes quasi-stationary with two peaks representing two

wells in GL − r+ plots. As t → ∞, the distribution becomes stationary with both peaks

having equal weight. Similar phenomena with leakage from LBH to SBH is observed in Figs.

2(c) and 2(d) where the initial distribution was localised to r = rhl.

This evolution of probability density of leaking from the initial state to other can be

9



(a) (b)

(c) (d)

Figure 2: The time evolution of the probability distribution ρ(r, t). In (a) and (b) the initial

Gaussian wave packet is placed at SBH state and in (c) and (d) they are located at LBH state.

The reflection boundary conditions are imposed at r = 0 and r = ∞. The coexistent temperatures

correspond to P = 0.5PcH (TE = 0.0284 in left panel) and P = 0.6PcH (TE = 0.0307 in right

panel) with g = 1.

made more apparent by looking at ρ(rhs, t) and ρ(rhs, t), where we examine the height of the

wave packets the global minima of the Gibbs free energy. For the initial state at SBH, the

behaviour is shown in Fig. 3. For t = 0, the probability density ρ is maximum for the SBH

branch, whereas, it is zero for the LBH branch. Later in the limit t → ∞, both approaches

the same value. For higher ensemble temperature, this saturation of distribution is attained

quickly (relaxation time is small). This is due to an increase in thermal fluctuation with

the increase in temperature, which prompts the leakage of states in the ensemble to reach

equilibrium distribution. This can also be seen in the decreasing height of the potential
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Figure 3: The time evolution of the probability distribution function ρ(r, t). The solid red and

dashed blue curves correspond to ρ(rhs, t) and ρ(rhl, t), respectively. The initial wave packet is

located at SBH state. The coexistent temperatures are (a) TE = 0.0284. (b) TE = 0.0307, with

g = 1.

barrier between SBH and LBH in the Gibbs free energy plots.

2. The first passage time

An important quantity in LBH-SBH phase transition, which is a stochastic dynamic

process, is the first passage time. As the process is due to the thermal fluctuation in the

ensemble, the first passage time is a random variable. It is defined as the time taken by

the initial black hole state to reach the unstable intermediate state for the first time. In

other words, it is the time required to climb the potential barrier of free energy from the

stable LBH or SBH state for the first time. The mean of this quantity is the measure of the

timescale of the phase transition.

First we write the expression for the probability that the initial SBH state of black hole

has not made a first passage by time t,

Σ(t) =

∫ rm

0

ρ(r, t)dt, (24)

where rm is obtained from the solution of the Eq. 19. For the initial LBH state, the definition

changes to,

Σ(t) =

∫ ∞

rm

ρ(r, t)dt, (25)
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(a) (b)

(c) (d)

Figure 4: Plots depicting the time evolution of the probability distribution ρ(r, t) with g = 1. In

(a) and (b) initial Gaussian wave packet is at SBH and in (c) and (d) it is at LBH states. The

absorbing boundary condition is imposed at r = rm and reflecting boundary condition at other

boundaries. The coexistent temperatures are (a) TE = 0.0284. (b) TE = 0.0307. (c) TE = 0.0284.

(d) TE = 0.0307, with g = 1.

The probability distribution Σ(t) is related to the first passage time Fp(t) as,

Fp(t) = −dΣ(t)

dt
. (26)

For both initial states it can be easily shown that [9],

Fp(t) = −D
∂

∂t
ρ(r, t)

∣

∣

∣

∣

∣

r=rm

, (27)

where the absorbing boundary condition at rm and reflecting boundary condition at the other

end is imposed on the Fokker-Planck equation. The quantity Fp(t)dt is the probability that

12
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Figure 5: The time evolution of the probability distribution Σ(t) that the system stays at the

initial state. (a) Initial SBH and (b) initial LBH state. Red solid and blue dashed curves are for

the coexistent temperatures TE = 0.0284 and TE = 0.0307, respectively, with g = 1.
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Figure 6: The probability distribution of the first passage time Fp(t). Red solid and blue dashed

curves are for the coexistent temperatures TE = 0.0284 and TE = 0.0307, respectively, with g = 1.

(a) From SBH state to LBH state. (b) From LBH state to SBH state.

the initial black hole state passes through the intermediate state located at rm for the first

time in a time interval of (t, t + dt). In the first passage, the black hole leaves the initial

state and hence Σ(r, t)|t→∞ = 0. The normalisation of the probability distribution is not

preserved here.

We solve the Fokker-Planck equation numerically by imposing an absorbing boundary

condition at r = rm. As the Gibbs free energy is diverging at r = 0, we take the reflecting

boundary at r = ǫ, where ǫ > 0. The results are presented in Fig. 4. We considered the

initial state in both SBH and LBH for different temperatures. It is clear that the wave

13



packets decays quickly as time passes. For a more intuitive understanding, we consider the

profile of ρ(rhi, t) from these plots for both the initial states, as shown in Fig. 5. It is clear

that the increase in temperature makes the probability drop faster. An important point to

note here is that the probability is not conserved.

The corresponding distributions of the first passage time Fp(t) are shown in Fig. 6.

The plots show a common behaviour for initial SBH and LBH states. In each case, there

exists a peak near t = 0, indicating a quick increase in the first passage time. This can

be understood as a large number of first passage events occur in a short interval of time,

and the distribution decays exponentially with time evolution. An increase in temperature

makes it easy for the events to takes place, and as a result, the peak of the distribution of

Fp(t) increases, become sharp and shifted towards t = 0.

We observe that the dynamics of phase transition of Hayward AdS black hole mimics

that of charged AdS black hole, which is studied in Ref. [9]. In the next section, we will

study the dynamics of one more regular black hole solution, namely Bardeen AdS black

hole, that arises from the generic class of regular solutions that we are interested in. The

observation will enable us to generalise the results for that class of regular black holes due

to the coupling of non-linear electrodynamics.

III. BARDEEN ADS BLACK HOLE

A. Thermodynamics and phase transition

In this section, we consider the Bardeen AdS spacetime which can be obtained from the

following Lagrangian density,

L (F) =
12

α

(αF)5/4

(

1 + (αF)1/2
)5/2

. (28)

The metric has the following form [21],

ds2 = −f(r)dt2 +
1

f(r)
dr2 + r2dΩ2, (29)

with the metric function,

f(r) = 1− 2Mr2

(g2 + r2)3/2
+

8

3
πPr2. (30)
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Where g is the monopole charge parameter. The mass of the black hole is given by,

M =

(

g2 + r2+
)3/2 (

8πPr2+ + 3
)

6r2+
. (31)

The Hawking temperature can be obtained from the surface gravity, which has the following

form,

T =
2Pr3+
g2 + r2+

+
r+

4π (g2 + r2+)
− g2

2πr+ (g2 + r2+)
. (32)

The first law of thermodynamics is identical to Hayward AdS spacetime,

dM = TdS +ΨdQm + V dP +Πdα, (33)

with the variables having the same meaning. Indeed, this is the generic form of the first

law of black hole thermodynamics in the extended phase space for spacetimes with non-

linear electric/magnetic charges, which can be obtained using a covariant approach [27].

The entropy of the black hole has the nontrivial form,

S =

∫

dM

T
= −2πg3

r+
2F1

(

−3

2
,−1

2
;
1

2
;−r2+

g2

)

, (34)

where 2F1 is the Hyper-geometric function. The volume V can be obtained from the first

law as,

V =

(

∂M

∂P

)

S,Qm,α

=
4

3
π
(

g2 + r2+
)3/2

. (35)

The equation of state for the system can be obtained from the Hawking temperature (Eq.

32) as,

P =
g2

4πr4+
+

g2T

2r3+
− 1

8πr2+
+

T

2r+
. (36)

Like Hayward case, Bardeen AdS black hole shows a first order vdW phase transition between

the LBH and SBH phase [26]. The critical values associated with this critical behaviour are

given by,

TcB = −
(√

273− 17
)

√

1
2

(√
273 + 15

)

24πg
, (37)

PcB =

√
273 + 27

12
(√

273 + 15
)2

πg2
. (38)

As in the previous case, the critical values depend on the parameter g.
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(a) (b)

Figure 7: The time evolution of the probability distribution ρ(r, t) for Bardeen AdS black hole.

(a) The initial Gaussian wave packet at SBH state, (b) initial wave packet at LBH state. The

reflection boundary conditions are imposed at r = 0 and r = ∞. The coexistent temperatures

correspond to P = 0.6PcB (TE = 0.02077 , with g = 1.
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Figure 8: The time evolution of the probability distribution function ρ(r, t) for Bardeen AdS

black hole. The solid red and dashed blue curves correspond to ρ(rhs, t) and ρ(rhl, t), respectively.

The initial wave packet is located at SBH state in (a) and at LBH state in (b). The coexistent

temperatures is TE = 0.02077, with g = 1.

B. Gibbs free energy landscape and dynamic properties of phase transition

We carry out similar studies for Bardeen AdS black hole to investigate the dynamics of

phase transition in the Gibbs free energy landscape. We find that the dynamical properties

of the Bardeen case are qualitatively similar to the Hayward case. However, we note that
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Figure 9: The time evolution of the probability distribution Σ(t) that the system stays at the

initial state for Bardeen AdS black hole. (a) Initial SBH and (b) initial LBH state (b). We chose

the coexistent temperature TE = 0.02077, with g = 1.

0 2000 4000 6000 8000 10000
0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

�

�
�
(�
)

(a)

0 2000 4000 6000 8000 10000
0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

�

�
�
(�
)

(b)

Figure 10: The probability distribution of the first passage time Fp(t) for Bardeen AdS black hole.

We chose the coexistent temperature TE = 0.02077, with g = 1. (a) From SBH state to LBH state.

(b) From LBH state to SBH state.

there are quantitative differences between these two solutions. The time scale involved in the

Bardeen case is much larger than the Hayward case. The results for a coexistent temperature

corresponding to the pressure P = 0.6PcB are shown in Figs. 7-10. The effect of temperature

on the dynamic process same as in the previous case.

IV. DISCUSSIONS

We investigate the dynamic properties of regular AdS black hole phase transitions in

the free energy landscape. Our focus is on probing the probability evolution using the
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Fokker-Planck equation for black hole solutions due to Einstein gravity coupled to non-

linear electromagnetic fields. The interesting feature of these solutions is that they do not

possess the physical singularity at the centre, which is replaced with a de-Sitter core. Of

particular interest, we considered the special cases of such regular solutions, namely Hayward

and Bardeen spacetimes.

First, we present the extended thermodynamics and small-large black hole transition in

brief. In the absence of analytical expression for the coexistence curve, we followed a naive

method to study the dynamics of the phase transition between two coexistent phases using

the swallowtail Gibbs free energy behaviour. The stable and unstable states of the black

hole are identified as the minima and maxima, respectively, of the off-shell Gibbs free energy

GL, when plotted against the order parameter horizon radius rh. The coexistent condition

is identified with the equal depth wells of the free energy.

The Fokker-Planck equation is solved numerically by imposing reflecting boundary con-

ditions at r = 0 and r = ∞ and with an initial Gaussian wave packet. The solutions are

sought for initial wave packets at small and large black hole state at different temperatures.

The results show that the initial black hole state will make a transition to other state as

time evolves. The probability distribution saturates on both states after a long time, and

the temperature guides this saturation time; the higher the ensemble temperature quicker

it relaxes. In the next part of our investigation, the first passage time for the process is

studied in detail. Here, the Fokker-Planck equation is solved numerically by imposing the

absorbing boundary condition at the unstable state, which is the location of the peak of

the potential barrier. The peak in the distribution hints at a large number of first passage

events occurring in a short period of time. The effect of temperature is studied in this case

too, which shows that the occurrence of the events is favoured by higher temperature.

The key idea in analysing the black hole system using free energy landscape is that, being

a thermal system, it must be an emergent macroscopic state of the underlying spacetime

degrees of freedom. With this inspiration, we believe that our study provides more insights

into the microscopic structure of the black hole in the absence of central singularity. This

study also reveals the proximity of regular solutions to charged AdS black holes. We ex-

pect that other regular black hole solutions will also exhibit similar microscopic degrees of
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freedom.
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