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Our research aims to probe the anisotropic matter field around black holes using black hole perturbation
theory. Black holes in the Universe are usually surrounded by matter or fields, and it is important to study
the perturbation and the characteristic modes of a black hole that coexists with such a matter field. In this
study, we focus on a family of black hole solutions to Einstein’s equations that extend the Reissner-
Nordström spacetime to include an anisotropic matter field. In addition to mass and charge, this type of
black hole possesses additional hair due to the negative radial pressure of the anisotropic matter. We
investigate the perturbations of the massless scalar and electromagnetic fields and calculate the quasinormal
modes (QNMs). We also study the critical orbits around the black hole and their properties to investigate
the connection between the eikonal QNMs, black hole shadow radius, and Lyapunov exponent.
Additionally, we analyze the graybody factors and scattering coefficients using the perturbation results.
Our findings indicate that the presence of anisotropic matter fields leads to a splitting in the QNM
frequencies compared to the Schwarzschild case. This splitting feature is also reflected in the shadow
radius, Lyapunov exponent, and graybody factors.
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I. INTRODUCTION

The recent breakthroughs in observational astrophysics
have significantly advanced our understanding of black hole
physics, transitioning it from a predominantly theoretical
field to one rich with empirical data. The first direct
detections of gravitational waves by the LIGO/Virgo col-
laborations, originating from the mergers of binary black
hole systems [1–3], provided compelling evidence for the
existence of stellar-mass black holes and offered unprec-
edented insights into their dynamics. Simultaneously, the
Event Horizon Telescope (EHT) collaboration achieved the
groundbreaking imaging of the supermassive black holes at
the centers of the galaxies M87 and Sgr A* [4–6], revealing
the shadow cast by these enigmatic objects and illuminating

the properties of spacetime in the strong-gravity regime near
event horizons. These observationalmilestones have opened
new avenues for probing the universe and necessitate the
development of refined theoretical models of black hole
physics. Despite the significant progress made in numerical
relativity, which allows for fully nonlinear simulations of the
Einstein equations without symmetry constraints, perturba-
tive techniques remain indispensable.1 Black hole perturba-
tion theory provides critical insights into the stability of
black holes and the emission of gravitational waves,
particularly in regimes where full numerical simulations
are computationally challenging or infeasible. For instance,
perturbative methods have been instrumental in analyzing
the late-time behavior of coalescing compact binaries after
the formation of an apparent horizon [11–13].
A central concept in black hole perturbation theory

is that of quasinormal modes (QNMs). QNMs are*Contact author: jcsagar195@gmail.com,
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1See Refs. [7–9] for the pioneering works on the perturbation
studies of Schwarzschild black hole. Also see the chapter
“Introduction to Regge and Wheeler: ‘Stability of a Schwarzs-
child Singularity’ ” by Kip Thorne in [10] for a historical account
and modern insights on black hole perturbation theory and their
relation to quasinormal modes.
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characteristic oscillations of black holes that dominate
the gravitational wave signal during the ringdown phase
following a perturbation or merger [14–16]. These oscil-
lations are described by complex frequencies, where
the real part corresponds to the oscillation frequency and
the imaginary part represents the damping rate due to the
emission of gravitational radiation. Importantly, the QNM
frequencies depend solely on the black hole’s parameters
and are independent of the initial perturbation that excited
them [17,18]. As such, they serve as a unique fingerprint of
the black hole, enabling the extraction of its properties from
gravitational wave observations. Unlike normal modes in
conservative systems, QNMs arise in dissipative systems
where energy can escape, making the time-evolution
operator non-Hermitian. In the context of black holes,
the presence of an event horizon leads to intrinsic dis-
sipation, and the associated eigenfunctions are generally
non-normalizable and may not form a complete set [19,20].
Nevertheless, QNMs play a crucial role in understanding
the dynamical response of black holes to perturbations and
have analogs in various physical systems, such as leaky
resonant cavities and atmospheric waves.2

In realistic astrophysical environments, black holes are
rarely isolated; they are typically embedded in rich sur-
roundings that include matter fields and radiation. The
interaction between a black hole and its environment can
significantly alter the spacetime geometry and influence
observable phenomena such as gravitational waves and
shadows cast by them. Understanding this interplay is
crucial for interpreting observational data and for making
accurate predictions about the behavior of black holes in
various astrophysical contexts. While isotropic matter
distributions have been extensively studied [24,25], aniso-
tropic matter fields have garnered increasing attention due
to their relevance in modeling realistic astrophysical
scenarios, such as relativistic stars, self-gravitating systems,
and compact stellar objects (See [26] and references
therein). Incorporating anisotropic matter fields into black
hole solutions introduces new features and deviations from
the Schwarzschild and Kerr metrics. For instance, a static,
spherically symmetric black hole solution with an aniso-
tropic matter field has been proposed, where the energy-
momentum tensor exhibits negative radial pressure [27].
The negative radial pressure allows the anisotropic matter
to distribute throughout the entire space from the horizon to
infinity, enabling a static configuration with the black hole.
This solution generalizes the Reissner-Nordström metric
and reduces to it under specific parameter choices. This
static solution has been extended to include rotation,
leading to a rotating black hole solution with an anisotropic
matter field [26]. These solutions have additional

parameters related to the density and anisotropy of the
surrounding matter field which lead to notable deviations in
the black hole’s properties and observational signatures.
For example, studies have shown that the presence of
anisotropic matter fields can alter the shape and size of the
black hole shadow [28], which has potential implications
for observations by instruments like the EHT. The influence
of anisotropic matter fields on particle collisions [29],
superradiance and instabilities [30], as well as late-time
tails, entropy aspects, and stability [31], has also been
studied. Additionally, Ref. [32] explores the homoclinic
orbit and the violation of the chaos bound by analyzing
particle trajectories around a black hole in the presence
of anisotropic matter fields. The authors found that viola-
tions of the chaos bound become more significant with
increasing angular momentum and that anisotropic matter
further contributes to these violations, even in nonextremal
black hole scenarios, through numerical computations
of Lyapunov exponents. Recently, wormholes with aniso-
tropic matter have also been obtained [33].
Understanding the perturbations and QNMs of

black holes surrounded by anisotropic matter fields is
essential for several reasons. First, it reveals how aniso-
tropic matter influences the stability and dynamical
response of the black hole to perturbations. Second, it
affects the gravitational wave signals emitted during events
such as mergers or accretion processes, potentially leading
to observable differences from standard predictions based
on the Schwarzschild or Kerr metric. Third, it contributes to
our broader understanding of how matter fields interact
with strong gravitational fields in general relativity, which
is important for exploring alternative theories of gravity and
the nature of dark matter.
In this paper, we study the perturbations and quasinormal

modes of static black holes immersed in anisotropic matter
fields. We focus on scalar and electromagnetic perturba-
tions and study how the QNM frequencies are modified due
to the anisotropic matter. We employ perturbation theory
and utilize semianalytical method to compute the QNM
frequencies, considering various values of the anisotropy
parameters. Additionally, we explore the connection
between the QNMs and the properties of unstable photon
orbits, such as the shadow radius and the Lyapunov
exponent, which characterize the instability timescale of
these orbits. We also analyze the scattering of waves in the
black hole spacetime and compute the graybody factors,
which describe the modification of the radiation spectrum
due to the potential barrier surrounding the black hole.
The paper is organized as follows. In Sec. II, we review

the black hole solution surrounded by an anisotropic matter
field and discuss its properties and parameter ranges. In
Sec. III, we derive the perturbation equations for scalar and
electromagnetic fields in this background. In Sec. IV, we
compute the quasinormal modes using higher order WKB
method and analyze the effects of the anisotropic matter

2For comprehensive reviews on perturbations and quasinormal
modes of black holes and their applications in gravitational wave
astronomy, we refer the reader to Refs. [14–16,21–23].
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field on the QNM spectrum. In Sec. V, we examine the
critical orbits around the black hole and their connection to
the QNMs, including the shadow radius and Lyapunov
exponent. In Sec. VI, we study the scattering of waves and
compute the graybody factors, discussing their dependence
on the anisotropy parameters. Finally, in Sec. VII, we
summarize our results and discuss their implications. In
addition, Appendix A provides details of the error analysis,
and Appendix B includes comments on gravitational
perturbations.

II. BLACK HOLE SURROUNDED BY AN
ANISOTROPIC MATTER FIELD

In this section, we present the solution of a black hole
surrounded by an anisotropic matter field. The action
leading to the field equations corresponding to such black
hole solutions is given by [26] (see also [32]),

I ¼ 1

16πG

Z
M

ffiffiffiffiffiffi
−g

p
d4x½ðR − FμνFμνÞ þ Lm� þ IS; ð1Þ

where R is the Ricci scalar of the spacetime manifold M,
Fμν is the electromagnetic field tensor, and Lm is the
Lagrangian density corresponding to the effective aniso-
tropic matter fields. The term corresponding to the aniso-
tropic matter field can result from an extra Uð1Þ field or
other diverse dark matter forms. Without loss of generality,
we set G ¼ 1. In the above action, IS is the Gibbons-
Hawking boundary term, which is essential to make the
variational principle well-defined [34,35]. The variation of
the action (1) leads to the Einstein equations,

Gμν ¼ Rμν −
1

2
gμνR ¼ 8πTμν; ð2Þ

and the Maxwell equations,

∇μFμν ¼ 1ffiffiffiffiffiffi−gp ∂μð
ffiffiffiffiffiffi
−g

p
FμνÞ ¼ 0: ð3Þ

The energy-momentum tensor in (2) is sourced by the
Maxwell field and the anisotropic matter field, which is
given by,

Tμν ¼
1

4π

�
FμαFα

ν −
1

4
gμνFαβFαβ

�
−2

∂Lm

∂gμν
þgμνLm: ð4Þ

Starting from a spherically symmetric and static space-
time metric ansatz, the field equations lead to the black hole
solution described by the following metric [27,36],

ds2¼−fðrÞdt2þfðrÞ−1dr2þr2dθ2þr2 sin2ðθÞdφ2; ð5Þ

with the metric function

fðrÞ ¼ 1 −
2M
r

þQ2

r2
−

K
r2w

; ð6Þ

where M is the ADM mass and Q is the electric charge of
the black hole.3 The parameters K and w control the density
and anisotropy of the fluid surrounding the black hole,
respectively [26,27,36].
The energy-momentum tensor for the anisotropic matter

field is Tν
μ ¼ diagð−ε; pr; pθ; pφÞ, where prðrÞ ¼ −εðrÞ

and pθðrÞ ¼ pφðrÞ ¼ wεðrÞ [27]. The negative radial
pressure allows the anisotropic matter to distribute through-
out the entire space from the horizon to infinity. Therefore,
the black hole can be in a static configuration with the
anisotropic matter field. The energy density is given by,

εðrÞ ¼ Q2

8πr4
þ r2wo
8πr2wþ2

; ð7Þ

where ro is a chargelike quantity with the dimension of
length, defined by r2wo ¼ ð1 − 2wÞK. However, it should be
noted that w ¼ 1 in the neutral (Q ¼ 0) anisotropic matter
field solution represents the Reissner-Nordström (RN) like
geometry with charge r0. Hence, we can say that the RN
geometry is a special case of the neutral anisotropic matter
field solution. This also emphasizes that the energy around
the charged black hole is anisotropic.
For static solutions, the constraints on the parameters w

and K from the positive energy conditions are given by
r2w0 ¼ ð1 − 2wÞK ≥ 0 for the neutral case, and Q2 þ
r2w0 r2ð1−wÞ ≥ 0 for the charged case [26]. Specific combi-
nations of w and K correspond to solutions that appear in
different spacetime structures. For example, when w ¼ 0,
the fluid explains the flat rotation curves of galaxies
[38,39]. If w ¼ 1, the matter field describes an extra
Uð1Þ, which has the same global behaviors of density
and pressure as the Maxwell field.
The spacetime metric (5) reduces to the Reissner-

Nordström black hole when K ¼ 0, and to the
Schwarzschild solution when K ¼ 0 and Q ¼ 0. When
K < 0 and w ¼ 1, it corresponds to the Reissner-
Nordström black hole with a constant scalar hair [40].
The asymptotic flatness of the black hole spacetime is
satisfied only for w > 0. However, for 0 ≤ w ≤ 1=2, the
energy density is not sufficiently localized such that the
total energy diverges [26]. Therefore, the choice for w to
have asymptotically flat solutions with finite total energy
is w > 1=2 (an additional analysis for the w ¼ 1=2 case is
given in [27]). However, any positive or negative value
is allowed for K (provided the black hole solution
exists), which represents diverse matters surrounding
the black hole [41]. In our analysis, we set Q ¼ 0 and

3In the absence of electric charge, this metric can accommo-
date a stealth scalar field [37].
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focus on the neutral case only (and we choose M ¼ 1
wherever required).
The metric becomes singular where fðrÞ ¼ 0, with the

largest root marking the event horizon of the black hole.
The disappearance of the event horizon occurs when the
equations fðrÞ ¼ 0 and f0ðrÞ ¼ 0 are satisfied simulta-
neously, allowing us to map out regions in the parameter
space of ðw;KÞ where black hole solutions exist.
Specifically, we have the following equations,

fðrÞ ¼ 0 ⇒ r2 − 2Mr − Kr2ð1−wÞ ¼ 0;

f0ðrÞ ¼ 0 ⇒ 2ðr −MÞ − 2ð1 − wÞKr1−2w ¼ 0: ð8Þ

Because it is not always possible to solve these equations
analytically, a parametric solution is often obtained, as
outlined in [28]. By expressing the first equation for K
and substituting this result into the second equation,
we find,

w ¼ M
2M − r

: ð9Þ

Substituting this into the initial equation, we obtain

K ¼ r
r

2M−rðr − 2MÞ: ð10Þ

The solutions are illustrated in Fig. 1 for a fixed M. The
solid line distinguishes regions where black hole solu-
tions exist from those leading to naked singularities.

III. BLACK HOLE PERTURBATION

Since the black hole is an open system, after a small
perturbation, it eventually relaxes to an equilibrium state by
losing energy through emitting radiation, depending on the
nature of the underlying perturbations. Conventionally, black
hole perturbation studies are carried out in two different ways.
(i) Perturbation of a test field in the black hole background:
Here, the perturbation of external fields in the black hole
spacetime is studied without considering the effects of back-
reaction. Under this assumption, the perturbation of fields is
described by the covariant equation of motion of the corre-
sponding field. (ii) Black hole metric perturbation: This is the
realgravitational perturbation inwhich the evolution equation
can be obtained by linearizing the Einstein equations. The
gravitational radiation emitted in this type of perturbation is
much stronger than that from external field perturbations.

A. Scalar field perturbation

First, we consider the massless scalar field perturbation.
It is described by the equation of field propagation in the
black hole spacetime, which is the Klein-Gordon equation,

FIG. 1. The parameter space of w andK showing regions corresponding to black hole and naked singularity solutions. The solid (blue)
curve represents the boundary where the event horizon vanishes.
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∇μ∇μΨðt; r⃗Þ ¼ 1ffiffiffiffiffiffi−gp ∂μð
ffiffiffiffiffiffi
−g

p
gμν∂νΨðt; r⃗ÞÞ ¼ 0: ð11Þ

In the background of a black hole with an anisotropic
matter field described by the spacetime metric (5), the
scalar field equation takes the form,�

∂
2Ψ
∂r2

þ ∂Ψ
∂r

�
∂

∂r
þ 2

r

��
fðrÞ − 1

fðrÞ
∂
2Ψ
∂t2

þ 1

r2

�
∂
2Ψ
∂θ2

þ cos θ
sinðθÞ

∂Ψ
∂θ

þ 1

sin2θ
∂
2Ψ
∂φ2

�
¼ 0: ð12Þ

Due to the spherical symmetry of the spacetime, the
variables can be separated by splitting the scalar field
Ψðt; r; θ;φÞ into radial and angular parts,

Ψðt; r; θ;φÞ ¼
X
l;m

ψðt; rÞ
r

Ym
l ðθ;φÞ: ð13Þ

Here, Ym
l ðθ;φÞ≡ Ym

l are the spherical harmonics, which
are the eigenfunctions of the Laplace-Beltrami operator Δ,
i.e., ΔYm

l ¼ −lðlþ 1ÞYm
l . On substituting Eq. (13) into

the Klein-Gordon Eq. (12), we obtain the radial part of the
perturbation equation as,

∂
2ψ

∂r2
þ f0ðrÞ

fðrÞ
∂ψ

∂r
−

1

fðrÞ2
∂
2ψ

∂t2

−
�
lðlþ 1Þ

r2
þ f0ðrÞ

r

�
ψ

fðrÞ ¼ 0: ð14Þ

The above equation can be written as a Schrödinger-like
wave equation using the coordinate transformation,

dr⋆
dr

¼ 1

fðrÞ ⇒ r⋆ ¼
Z

1

fðrÞ dr: ð15Þ

The new coordinate, r⋆, is called the tortoise coordinate,
which approaches r⋆ → −∞ at the event horizon, and
r⋆ → þ∞ at asymptotic infinity. The differential equa-
tion (14) in terms of the tortoise coordinate reads,

∂
2ψ

∂t2
−
∂
2ψ

∂r2⋆
þ
�
lðlþ 1Þ

r2
þ f0ðrÞ

r

�
fðrÞψ ¼ 0: ð16Þ

The scalar field is oscillatory with respect to time with an
angular frequency of ω, which is the quasinormal mode,
and is given by ψðt; r⋆Þ ¼ eiωtψðr⋆Þ.4 Substituting this in
Eq. (16), we get,

d2ψ
dr2⋆

þ ½ω2 − VSCðrÞ�ψ ¼ 0; ð17Þ

where VSCðrÞ is the effective potential of scalar field
perturbation, which is given by,

VSCðrÞ ¼
�
lðlþ 1Þ

r2
þ 2M

r3
þ 2Kw

r2ðwþ1Þ

��
1 −

2M
r

−
K
r2w

�
:

ð18Þ

This potential for scalar perturbation becomes similar to the
potential for scalar perturbation in the background of a
Kiselev black hole when the equation of state parameter w
and the Kiselev parameter ϵ are related as 2w ¼ 3ϵþ 1 and
the constants K (for the anisotropic matter field) and c (for
the Kiselev black hole) are equal K ¼ c [42].

B. Electromagnetic perturbation

Now we focus on the electromagnetic field perturba-
tions, which are described by the vacuum Maxwell’s
equations in black hole spacetime,

∇μFμν ¼ 1ffiffiffiffiffiffi−gp ∂μð
ffiffiffiffiffiffi
−g

p
FμνÞ ¼ 0; ð19Þ

where ∇μ denotes the covariant derivative. Fμν is the
electromagnetic stress tensor (Faraday tensor) defined in
terms of the potential Aμ as Fμν ¼ ∇μAν −∇νAμ. Since the
background spacetime is spherically symmetric, we can use
vector spherical harmonics to describe the potential Aμ,
whose components are given by [43,44],

Aμ ¼
X
l;m

2
666664

0
BBBBB@

0

0
bml

sinðθÞ ∂φY
m
l

−bml sinðθÞ∂θYm
l

1
CCCCCAþ

0
BBBBB@

fml Y
m
l

hml Y
m
l

kml ∂θY
m
l

kml ∂φY
m
l

1
CCCCCA

3
777775; ð20Þ

where bml ; f
m
l ; h

m
l ; k

m
l are functions that depend on the

radial and time coordinates ðt; rÞ. Under the angular space
inversion transformation ðθ;φÞ → ðπ − θ; π þ φÞ, the par-
ity of the first part is ð−1Þlþ1, which is the axial or odd term
(magnetic-type parity), and the parity of the second part is
ð−1Þl, which is the polar or even part (electric-type parity).
Due to the spherical symmetry of the background space-
time, the axial and polar perturbations can be treated
independently and the solution will be independent of
m. Moreover, both axial and polar equations will lead to
identical results [45]. Therefore, we focus on the axial
electromagnetic perturbations.
Using the axial part of Eq. (20), the independent nonzero

components of the Faraday tensor corresponding to axial
perturbation are,

4Given the static nature of the background metric, the time
dependence of metric perturbations can be decomposed into
Fourier modes,

Fðt; rÞ ¼
Z þ∞

−∞
dωF̃ðω; rÞe−iω t:

Consequently, the time derivatives become -i ω in the equations
of motion.
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Ftθ ¼
1

sinðθÞ ∂φY
m
l ∂tψ

Frθ ¼
1

fðrÞr2 sinðθÞ ∂φY
m
l ∂rψ

Fθφ ¼ lðlþ 1Þ sinðθÞYm
l ψ

Ftφ ¼ − sinðθÞ∂θYm
l ∂tψ

Fφr ¼ sinðθÞ∂θYm
l ∂rψ ð21Þ

where we denote bðt; rÞ by ψðt; rÞ. Expanding Eq. (19) by
substituting the components of Fμν, and separating the
variables, the radial part of the equation in terms of the
tortoise coordinate (15) takes the following form,

∂
2ψ

∂t2
−
∂
2ψ

∂r2⋆
þ lðlþ 1ÞfðrÞ

r2
ψ ¼ 0: ð22Þ

Using the Fourier decomposition ψðt; r⋆Þ ¼ eiωtψðr⋆Þ,
we get,

d2ψ
dr2⋆

þ ½ω2 − VEMðrÞ�ψ ¼ 0; ð23Þ

where VEM is the effective potential of electromagnetic
perturbation,

VEMðrÞ ¼
lðlþ 1Þ

r2

�
1 −

2M
r

−
K
r2w

�
: ð24Þ

The effective potential plays an important role in
determining the QNM frequencies. We plot the effective
potentials for scalar and electromagnetic perturbations in
Figs. 2 and 3. Both effective potentials approach zero at

(a) (b)

(c) (d)

FIG. 2. The behavior of the effective potential for scalar perturbation. Left panel: variation with K. Right panel: variation with w.
In 2(a), the effect of K is displayed by fixing w. For negative K, the height of the potential increases relative to the Schwarzschild case
(K ¼ 0), whereas for positive K, the height decreases. The strength of this splitting is determined by the w value, as depicted in 2(b),
where it is clear that for smaller w values, the deviation is more from the Schwarzschild case, i.e., the decrease in the height of the
potential is greater for smaller w values. Similarly, for a fixed negative K value, the increase in the height of the potential is greater for
smaller w values. In 2(c) and 2(d), it is shown that the observed splitting of the potential exists for all l modes.
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the horizon and infinity, which is similar to that of the
Schwarzschild black hole. In the intermediate region, the
behavior of the effective potentials for the perturbations
depends on the parameters K and w. Since both potentials
exhibit similar behavior, we chose the scalar case for
detailed analysis.
From Fig. 2(a), we see that for a given value of l and w,

there exists a splitting in the effective potential as the K
value is varied, i.e., for positive and negative values
of K, the potentials are shifted to either side of the
Schwarzschild potential (K ¼ 0). However, the strength
of the splitting depends on the value of w as shown in
Fig. 2(b). We consider only physically admissible values
of w, i.e., w ≥ 1=2. It should be noted that for a given
value of K (K ≠ 0), the limit w → ∞ corresponds to the
Schwarzschild case.
In Fig. 2(b), we fix K to a positive value and vary the w

value. The potential is more deviated from that of the
Schwarzschild case for smaller values of w (less
anisotropy). As the w value increases, the potential
approaches the Schwarzschild case. The qualitative
behavior of the effective potential with varying K and
w is true for all l modes [see Figs. 2(c) and 2(d)].
However, for a given negative value of K, the increase
in w increases the height of the potential.

IV. QUASINORMAL MODES

The QNM frequencies, ω in Eqs. (17) and (23), are
computed by requiring appropriate boundary conditions
[16]. Near the event horizon, r⋆ → −∞, the waves are
purely incoming, and at asymptotic infinity, r⋆ → ∞, they
are purely outgoing,

ψðr⋆Þ ∼ eiωðt�r⋆Þ r⋆ → �∞: ð25Þ

The effective potentials of both the scalar and electro-
magnetic perturbations exhibit similar behavior with a
single peak and vanishing tails at the event horizon and
asymptotic infinity. These behaviors of the effective
potential are the necessary boundary conditions to use
the semianalytical methods to calculate the QNM
frequencies. Here, we will use the WKB method to
calculate the QNM frequencies, which was first devel-
oped in Ref. [46]. Using the asymptotic behavior given
above and the appropriate boundary conditions (see [16]
for details), the first-order solution to the QNM frequen-
cies takes the form,

ω2 ¼ V0 − iα
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2Vð2Þ

0

q
: ð26Þ

Here, α ¼ nþ 1
2
, where n is the overtone number, which

takes the values n ¼ 0; 1; 2; 3;…, and V0 ¼ Vðr⋆0
Þ,

where r⋆0
is the critical point (the maximum of the

effective potential in tortoise coordinates defined as
dV
dr⋆

jr⋆¼r⋆0
¼ 0), and VðmÞ

0 ¼ dmV
drm⋆

jr⋆0 is the value of the

m-th derivative of V at r⋆0
. The analytical expression for

r⋆0
is not always feasible, making the WKB method

semianalytical. The precision of the WKB method can be
improved by calculating higher-order terms.
The third-order WKB approximation formula given

in [47] is shown below,

(a) (b)

FIG. 3. The behavior of the effective potential for electromagnetic perturbation. (a) variation with K. (b) variation with w. The
qualitative behavior of the potential is the same as that of the scalar potential.
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ω2 ¼
�
V0 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2Vð2Þ

0

q
Λ2

�
− iα

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2Vð2Þ

0

q
ð1þ Λ3Þ;

Λ2 ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−2Vð2Þ
0

q
"
1

8

 
Vð4Þ
0

Vð2Þ
0

!�
1

4
þ α2

�
−

1

288

 
Vð3Þ
0

Vð2Þ
0

!
2

ð7þ 60α2Þ
#
;

Λ3 ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−2Vð2Þ
0

q
"

5

6912

 
Vð3Þ
0

Vð2Þ
0

!
4

ð77þ 188α2Þ − 1

384

 
ðVð3Þ

0 Þ2Vð4Þ
0

ðVð2Þ
0 Þ3

!
ð51þ 100α2Þ

þ 1

2304

 
Vð4Þ
0

Vð2Þ
0

!
2

ð67þ 68α2Þ þ 1

288

 
Vð3Þ
0 Vð5Þ

0

ðVð2Þ
0 Þ2

!
ð19þ 28α2Þ − 1

288

 
Vð6Þ
0

Vð2Þ
0

!
ð5þ 4α2Þ

#
: ð27Þ

Similarly, the 6th order WKB formula is [48],

iðω2 − V0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2Vð2Þ

0

q ¼ αþ
X6
i¼2

Λi: ð28Þ

The correction terms Λ2 and Λ3 are as shown before, and
Λ4, Λ5, and Λ6 are given in [48]. Recently, the method has
been extended to even higher orders, up to the 13th order, in
Ref. [49]. However, it should be noted that the higher order
WKB approximation does not always converge and results
in more accuracy, and the optimal order WKB approxi-
mation depends on the spacetime potential considered [50].
The error in WKB order can be estimated by using,

Δi ¼
jωiþ1 − ωi−1j

2
; ð29Þ

where ωi represents the QNM value obtained from the ith

order WKB approximation. We chose QNM frequencies
from the optimal WKB order having the least error.
Previous studies on black hole perturbations with matter

fields, particularly quintessence, often computed QNMs
using only lower-order WKB approximations without per-
forming detailed error analyses. For instance, Ref. [30]
investigated a charged massive scalar field around
a Reissner–Nordström black hole immersed in an aniso-
tropic fluid using the first-order WKB method,5 while
Refs. [51–53] applied the third-orderWKBmethod to study
both massive and massless scalar and electromagnetic
perturbations in Schwarzschild black holes surrounded by
quintessence. Similarly, in Ref. [54] the third-order WKB
method was used to calculate the QNMs of axial gravita-
tional perturbations in Schwarzschild black holes with
quintessence; however, the perturbations of the energy-
momentum tensor were neglected in that work—a point we

discuss in detail for both axial and polar gravitational
perturbations in Appendix B. Moreover, employing
higher-order WKB analyses accompanied by proper error
estimates is crucial to determine whether the effects of the
anisotropic matter field are significant compared to the
inherent numerical uncertainties of the WKB method (see
Appendix A). Finally, the splitting of QNM frequencies
introduced by the anisotropic fluid, as detailed below, was
not observed in these earlier studies.
We have calculated QNM frequencies for both scalar

and electromagnetic perturbations for different values of w
and K in Tables I and II. The details of error analysis
are given in Appendix A. We find that the error in the
WKB approximation is always negligible compared to the
effect of the anisotropic matter field on both the imaginary
and real parts of the QNM frequencies, as shown in
Fig. 10. In the QNM frequencies, we observe that for a
given value of w, the change inK induces a splitting around
Schwarzschild QNMs. This is in direct correlation with the
splitting observed in the effective potential.
It is interesting to note that this behavior is analogous to

the Zeeman-like splitting observed in other black hole
QNM studies. For example, a Zeeman-like splitting is
observed in slowly rotating Kerr black holes [16,55] and
noncommutative black hole perturbations [56–58].
However, the observed splitting in the presence of an
anisotropic matter field is not exactly a Zeeman-like
splitting as there is no azimuthal quantum number m
involved. Although there is an analogy between the RN
black hole and a black hole surrounded by an anisotropic
matter field, the splitting we observe in the latter makes it
distinct from the former (see Ref. [59] for the charged case).
The Schwarzschild case corresponds to either K ¼ 0
or w → ∞.
We present a detailed analysis of the effect of both

parameters in Fig. 4. The horizontal line (black dotted line)
corresponds to the Schwarzschild QNM values. From
Fig. 4(a), it is clear that the curves corresponding to
negative and positive K values lie above and below the

5Reference [30] also employed the Pöschl-Teller approach,
another semianalytic method.
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TABLE I. Scalar QNM values obtained from the higher-order WKB method by varying the K value for different l values. The
significant digit errors are shown in brackets. The optimal WKB order used for each calculation is indicated within the QNM values in
square brackets. The parameters fixed are M ¼ 1, w ¼ 3=2, n ¼ 0.

K ωR þ iωI Δi δωR
δωI

l ¼ 0
0.2 0.11(0542)–0.10(4256) i [7] 0.003236 2.107817 0.729688
0.1 0.11(1850)–0.10(3934) i [7] 0.003016 0.949399 0.418916
0.01 0.11(2829)–0.10(3550) i [7] 0.002944 0.082948 0.047991
0.001 0.11(2913)–0.10(3506) i [7] 0.002942 0.008167 0.004863
0 0.11(2922)–0.10(3501) i [7] 0.002942 0 0
−0.001 0.11(2932)–0.10(3496) i [7] 0.002943 0.008139 0.004877
−0.01 0.11(3013)–0.10(3450) i [7] 0.002942 0.080125 0.049399
−0.1 0.11(3690)–0.10(2929) i [7] 0.002986 0.679531 0.551994
−0.2 0.11(4259)–0.10(2292) i [7] 0.003004 1.183221 1.168214

l ¼ 1
0.2 0.2895(73)–0.0983(49) i [8] 0.000029 1.147384 0.724132
0.1 0.2912(24)–0.0980(10) i [8] 0.000021 0.583562 0.377308
0.01 0.2927(60)–0.0976(80) i [9] 0.000020 0.059280 0.039157
0.001 0.2929(16)–0.0976(46) i [9] 0.000020 0.005936 0.003945
0 0.2929(34)–0.0976(42) i [9] 0.000020 0 0
−0.001 0.2929(51)–0.0976(38) i [9] 0.000020 0.005938 0.003952
−0.01 0.2931(08)–0.0976(03) i [9] 0.000019 0.059454 0.039813
−0.1 0.2946(99)–0.0972(23) i [9] 0.000023 0.602565 0.428862
−0.2 0.2965(22)–0.0967(43) i [8] 0.000032 1.224997 0.921042

l ¼ 2
0.2 0.478356–0.097413 i [10] 2.41258 × 10−7 1.093430 0.676781
0.1 0.480949–0.097107 i [11] 3.49189 × 10−7 0.557133 0.359756
0.01 0.483370–0.096795 i [12] 2.10014 × 10−7 0.056685 0.038085
0.001 0.483616–0.096762 i [12] 2.00961 × 10−7 0.005679 0.003831
0 0.483644–0.096759 i [12] 2.00043 × 10−7 0 0
−0.001 0.483671–0.096755 i [12] 1.99142 × 10−7 0.005681 0.003836
−0.01 0.483919–0.096721 i [12] 1.91803 × 10−7 0.056910 0.038582
−0.1 0.486447–0.096362 i [12] 1.93677 × 10−7 0.579515 0.409453
−0.2 0.489367–0.095910 i [11] 2.63226 × 10−7 1.183352 0.876847

TABLE II. Electromagnetic QNM values obtained from higher-order WKB method by varying the K value for different l values. The
significant digit error is shown in brackets. In each case, we have chosen the optimal WKB order, which is indicated in square brackets.
The parameters fixed are M ¼ 1, w ¼ 3=2, n ¼ 0.

K ωR þ iωI Δi δωR
δωI

l ¼ 1
0.2 0.2446(35)–0.0930(01) i [6] 0.000040 1.451310 0.568229
0.1 0.2463(74)–0.0928(40) i [6] 0.000088 0.750926 0.394419
0.01 0.2480(83)–0.0924(65) i [12] 0.000042 0.062609 0.011413
0.001 0.2482(22)–0.0924(75) i [12] 0.000032 0.006280 0.001100
0 0.2482(38)–0.0924(76) i [12] 0.000035 0 0
−0.001 0.2482(54)–0.0924(77) i [12] 0.000038 0.006285 0.001091
−0.01 0.2484(23)–0.0924(75) i [11] 0.000030 0.074559 0.001001
−0.1 0.2502(42)–0.0921(56) i [9] 0.000058 0.807194 0.345679
−0.2 0.2522(14)–0.0917(35) i [9] 0.000085 1.601690 0.801271

l ¼ 2
0.2 0.45219(6)–0.09561(0) i [6] 1.582946 × 10−6 1.180020 0.636960
0.1 0.454843–0.095326 i [12] 9.000555 × 10−7 0.601523 0.338649

(Table continued)
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(a) (b)

(c) (d)

FIG. 4. Left panel: (a) and (c) showing the effect of w on QNM frequencies. Right panel: (b) and (d) showing the effect of K on QNM
frequencies. The angular mode l ¼ 2 is chosen as it is the lowest mode where the error in WKB method is significantly smaller than the
corrections introduced by the anisotropic matter field.

TABLE II. (Continued)

K ωR þ iωI Δi δωR
δωI

0.01 0.457315–0.095039 i [12] 9.682657 × 10−8 0.0612684 0.036037
0.001 0.457567–0.095008 i [12] 5.300744 × 10−8 0.006138 0.003626
0 0.457595–0.095004 i [12] 5.349791 × 10−8 0 0
−0.001 0.457624–0.095001 i [12] 5.540361 × 10−8 0.006140 0.003631
−0.01 0.457877–0.094970 i [12] 1.089834 × 10−7 0.061524 0.036547
−0.1 0.460466–0.094633 i [10] 4.472695 × 10−7 0.627339 0.390971
−0.2 0.463463–0.094205 i [9] 6.848180 × 10−7 1.282340 0.841890

l ¼ 3
0.2 0.649529–0.096236 i [12] 3.627429 × 10−8 1.121858 0.648604
0.1 0.653141–0.095947 i [12] 1.782784 × 10−8 0.571957 0.345698
0.01 0.656516–0.095651 i [12] 2.118348 × 10−9 0.058242 0.036678
0.001 0.656860–0.095620 i [12] 1.000391 × 10−9 0.005835 0.003689
0 0.656899–0.095616 i [12] 9.529588 × 10−10 0 0
−0.001 0.656937–0.095613 i [12] 9.348805 × 10−10 0.005837 0.003695
−0.01 0.657283–0.095581 i [12] 1.783486 × 10−9 0.058481 0.037172
−0.1 0.660814–0.095238 i [10] 1.408763 × 10−8 0.595962 0.395305
−0.2 0.664901–0.094805 i [12] 3.123030 × 10−8 1.218143 0.848420
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Schwarzschild line, and they all converge to the
Schwarzschild line as w increases. The strength of
deviation depends on the w value; the smaller the w, the
higher the strength of the splitting 4(b). The splitting of
QNMs is flipped for the imaginary QNM compared to the
real case [Figs. 4(c) and 4(d)]. For negative values of K
(with w value fixed to 3=2), the real and imaginary parts of
the QNM frequencies seem to follow the same pattern as
for the charged black hole (see Refs. [59,60]). However, it
is important to note that this argument cannot be gener-
alized for arbitrary w values due to the crossover observed
in Figs. 4(c) and 4(d). The splitting of QNM values in the
presence of an anisotropic matter field is also evident from
the numerical values provided in Tables I and II.
Since the values of K and w characterize different fluid

configurations as discussed in Sec. II, it can be argued that
the deviated QNM frequencies are, in fact, a measure of the
fluid properties around a Schwarzschild black hole. This
deviation from the Schwarzschild black hole can be
calculated using the relative effect defined as [61],

δωR
¼ jωRa

− ωRs
j

ωRs

× 100% ð30Þ

δωI
¼ jωIa − ωIs j

ωIs

× 100% ð31Þ

where ωRa
and ωIa are the value of real and imaginary parts

of QNMs in the presence of the anisotropic matter field.
ωRs

and ωIs are that of schwarzchild limit. The values δωR

and δωI
are listed in Tables I and II, from which it is evident

that the splitting of QNM values around the Schwarzschild
values is not symmetric.

V. CRITICAL ORBITS AROUND BLACK HOLE
AND THEIR CONNECTION TO QNMs

In this section, we study the shadow radius and
Lyapunov exponent and their relation with the quasinormal
modes we analyzed previously. The study of geodesic
motion is important in determining the observable aspects
of black hole spacetimes. Particularly, the unstable null
geodesics are of importance as they are closely related to
the optical properties of black holes and are also associated
with the quasinormal modes, as the angular velocity
determines the real part of QNM and the instability time-
scale of the orbit is related to the imaginary part of QNM. In
Ref. [62], it was shown that in the eikonal limit, for any
static, spherically symmetric, asymptotically flat space-
time, the angular velocity Ωc at the unstable photon orbit
and the Lyapunov exponent λ, which determines the
instability timescale of the orbit, are related to the analytic
WKB approximations for QNMs as

ωQNM ¼ Ωcl − i

�
nþ 1

2

�
jλj ð32Þ

where n is the overtone number and l is the angular
momentum of the perturbation. The eikonal (geometric
optics) limit is valid for a wide class of potentials associated
with the massless perturbations, including the scalar and
electromagnetic perturbations, which have the same behav-
ior in the eikonal limit. In the eikonal limit, the real part of
QNM is related to the shadow radius and the imaginary part
to the Lyapunov exponent.
To obtain the connection between the unstable null

geodesic and quasinormal mode, we consider the
Lagrangian of particles,

L ¼ 1

2
gμνẋμẋν; ð33Þ

where the dot denotes the derivativewith respect to the affine
parameter s. The conjugate momenta pμ are given by
pμ ¼ ∂L=∂ẋμ. Due to the spacetime symmetry, the con-
jugate momenta pt and pφ are conserved quantities which
define the total energyE and the angularmomentumL. Thus
we have,

pt ¼ −fðrÞṫ ¼ −E; ð34Þ

pφ ¼ r2 sin2ðθÞφ̇ ¼ L: ð35Þ

Using the above equations, the HamiltonianH ¼ pμẋμ − L
reads,

H ¼ 1

2

�
−

E2

fðrÞ þ
ṙ2

fðrÞ þ r2θ̇2 þ L2

r2 sin2ðθÞ
�
: ð36Þ

Since the spacetime is spherically symmetric, we restrict the
analysis to the equatorial plane (θ ¼ π=2) without loss
of generality. For null geodesics, ds2 ¼ 0, which implies
H ¼ 0 and we get ṙ2 þ VeffðrÞ ¼ 0, where VeffðrÞ is the
effective potential,

VeffðrÞ ¼ E2 −
L2fðrÞ
r2

: ð37Þ

A. Shadow radius and QNM

The photon sphere, the innermost circular orbit,
comprises unstable photon orbits that are in close vicinity
to the black hole event horizon, defining the boundary of
the shadow cast by a compact object. For the innermost
circular orbit, VeffðrÞ¼V 0

effðrÞ¼ 0 (where prime 0 denotes
the derivative with respect to the radial coordinate r), which
gives,
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rf0ðrÞ − 2fðrÞ ¼ 0 ð38Þ

and

L
E
¼ rffiffiffiffiffiffiffiffiffi

fðrÞp ≡ ξ ð39Þ

where the quantity ξ is called the impact parameter.
Photons originating from a distant source with an impact
parameter ξ greater than the critical impact parameter, ξc,
remain outside the photon sphere and reach the observer.
Conversely, photons with impact parameters smaller
than ξc are trapped within the photon sphere and do not
reach the observer, creating dark regions in the observer’s
sky. The aggregation of these dark regions forms the

shadow [63,64]. The critical impact parameter (ξc) at
r ¼ rp (radius of the photon sphere) is the shadow radius
of the black hole Rs. Hence we get,

Rs ¼
rpffiffiffiffiffiffiffiffiffiffiffi
fðrpÞ

p ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 þ β2

q
ð40Þ

where ðα; βÞ are the celestial coordinates. Using this
equation, we studied the behavior of the shadow radius
with K and w in Fig. 5. The shadow radius increases from
the Schwarzschild value for positive values of K, whereas it
decreases for negative values. Physically, this implies that
an anisotropic matter field surrounding a Schwarzschild
black hole influences the shadow radius. We find that the
qualitative nature of the plots is similar to that of the real

(a) (b)

(c) (d)

FIG. 5. (a) Effect of w on the shadow radius. (b) Effect of K on the shadow radius. (c) Circles representing the shadow radius in
celestial coordinates for variousK values, with w fixed at w ¼ 2=3. (d) Circles representing the shadow radius in celestial coordinates for
various w values, with K fixed at K ¼ 0.1.
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part of QNMs in Fig. 4. Particularly, the splitting behavior
has a striking similarity to the plots of the real part of
QNMs in Fig. 4.
On the other hand, there exists a relationship between

gravitational lensing in the strong-deflection limit and
the frequencies of the quasinormal modes, which is given
as [65],

Ωc ¼
c

θDOL
; λ ¼ c ln r̃

2πθDOL
; ð41Þ

where c is the speed of light, θ ¼ Rs=D is the angular
position of the image, DOL is the distance from the
observer to the lens, and r̃ is the flux ratio. Using (41),
(40), and (32), the relationship between the eikonal QNM
and shadow radius is established in Ref. [66],

ωR ¼ lim
l≫1

l
Rs

: ð42Þ

We have studied the relationship between the shadow
radius and the real part of QNM in Fig. 7(a), from which it
is evident that in the eikonal limit, they exactly match as
given in (42). The relationship exists for all values of K
and w.

B. Lyapunov exponent and QNM

The Lyapunov exponent λ quantifies the average rate at
which nearby trajectories in phase space either converge or
diverge. If λ > 0, it signifies divergence between nearby
trajectories, indicating a high sensitivity to initial condi-
tions.6 For a spherically symmetric spacetime, the null

geodesic stability analysis using the Lyapunov exponent
results in [62,67]

λ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V 00
effðrpÞ
2ṫ2

r
ð43Þ

where VeffðrÞ is given in (37). For an unstable circular
geodesic,we haveVeffðrÞ¼ 0,V 0

effðrÞ ¼ 0, andV 00
effðrÞ > 0.

From (37),

V 00
effðrpÞ ¼

L2

r4p
½2fðrpÞ − r2pf00ðrpÞ�: ð44Þ

Substituting (44) into (43), and using (34) and (39), we
obtain,

λ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðrpÞ½2fðrpÞ − r2pf00ðrpÞ�

2r2p

s
: ð45Þ

We studied the behavior of the Lyapunov exponent using
this equation in Fig. 6 for different values of K and w. We
find that the behavior is analogous to the imaginary part of
QNM as shown in Fig. 4.
On the other hand, there exists a relationship between the

Lyapunov exponent and the imaginary part of QNMs in the
eikonal limit as shown in (32),

λ ¼ lim
l≫1

�
−

ωI

ðnþ 1
2
Þ
�
: ð46Þ

We studied the connection between the Lyapunov exponent
and the imaginary part of QNMs in Fig. 7(b), and we find
that in the eikonal limit they match according to this
equation. The relationship exists for all values of K and w.

(a) (b)

FIG. 6. (a) Effect of K on Lyapunov Exponent. (b) Effect of w on Lyapunov Exponent.

6Reference [32] examined the Lyapunov exponent for black
holes with an anisotropic matter field to investigate violations of
the chaos bound.
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VI. SCATTERING AND GRAYBODY FACTORS

In this section, we analyze reflection coefficients RðωÞ
and transmission coefficients TðωÞ for various values of
black hole parameters. Radiation originating near a black
hole event horizon is emitted into the surrounding space,
necessitating traversal through a nontrivial, curved space-
time geometry before detection by an observer, such as one
situated at asymptotic infinity in an asymptotically flat
spacetime. Consequently, the surrounding spacetime acts as
a potential barrier for the radiation, resulting in a deviation
from the original radiation spectrum observed by an
asymptotic observer. This deviation, quantified by the
relative factor between the asymptotic radiation spectrum
and the emitted radiation spectrum, is commonly referred to
as the graybody factor. Understanding this concept is
straightforward by examining the behavior of the effective
potential. For both scalar and electromagnetic perturba-
tions, a finite potential barrier (Figs. 2 and 3) exists between
the event horizon and asymptotic infinity. As a result, any
wave traversing black hole spacetime encounters these
finite positive potential barriers as obstacles, leading to
partial reflection and transmission of the wave. As dem-
onstrated previously, the radial perturbation equations can
be reduced to a Schrödinger-like equation, which character-
izes the scattering of waves in black hole spacetime. This
equation yields asymptotic solutions given by,

ψðr⋆Þ ¼ TðωÞe−iωr⋆ ; r⋆ → −∞ ð47Þ
ψðr⋆Þ ¼ e−iωr⋆ þ RðωÞeiωr⋆ ; r⋆ → þ∞ ð48Þ

Note that these conditions are different from the one
we used in the calculation of QNMs (25). Next, we proceed
to compute the square of the amplitude of the wave

function, which is partially transmitted and partially
reflected by the potential barrier. The conservation of
probability dictates that,

jRðωÞj2 þ jTðωÞj2 ¼ 1: ð49Þ
We employ the WKB approximation to calculate the
transmission and reflection coefficients, which provide
reasonable accuracy [68–70]. Specifically, the reflection
amplitude is expressed as [47],

RðωÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ e−2πiα

p : ð50Þ

Considering higher-order WKB approximations, α in the
above equation is given by [70],

α ¼ iðω2 − V0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2Vð2Þ

0

q −
X6
i¼2

ΛiðαÞ ð51Þ

where V0 is the peak value of the effective potential, V
ð2Þ
0 is

the value of the second derivativewith respect to the tortoise
coordinate, and ΛiðαÞ are the higher-order WKB correc-
tions. The graybody factor is defined as γl ¼ jTðωÞj2.
Substituting (50) and (51) into (49), we obtain,

γl ¼ jTðωÞj2 ¼ 1 −
				 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ e−2πiα
p

				2: ð52Þ

Depending on the frequency and height of the potential
barrier, various scenarios may arise. When ω2 ≫ V0,
indicating that the frequency of the wave is significantly
greater than the height of the barrier, reflection of the wave
by the barrier does not occur. Consequently, one would

(a) (b)

FIG. 7. (a) Relation between the shadow radius and real part of QNM in the eikonal limit. (b) Relation between the Lyapunov
Exponent and imaginary part of QNM in the eikonal limit.
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anticipate the reflection coefficient to approach zero, as the
wave frequency permits it to cross the barrier. Hence, under
these conditions, jTðωÞj2 is expected to be close to 1.
Conversely, when ω2 ≪ V0, signifying that the frequency
is much smaller than the barrier height, the wave will be
reflected back by the barrier. Additionally, depending on
the values of ω and V0, some portion of the wave may
tunnel through the barrier. In this scenario, we should
observe precisely the opposite behavior of RðωÞ and TðωÞ
compared to the previous case.
From Fig. 8, the splitting behavior of the graybody

factor, similar to QNM frequencies, is evident. Here we
have considered only scalar perturbation. The electromag-
netic perturbation also exhibits similar behavior. It can be
seen that the larger the K, the larger the graybody factor,
meaning that a smaller portion of particles is reflected by
the effective potential. This can be easily understood from

the behavior of the effective potential, which becomes
lower (i.e., easier to penetrate) for larger K. However, the
strength of the enhancement or suppression of the graybody
factor depends on w. This phenomenon exists for different
lmodes. The dependence of the graybody factor on l is the
same as that of the Schwarzschild case.
Partial absorption cross section σl for a particular l is

given by [44],

σl ¼ πð2lþ 1Þ
ω2

jTlðωÞj2 ð53Þ

Total absorption cross section is defined as,

σ ¼
X
l

σl ¼
X
l

πð2lþ 1Þ
ω2

jTlðωÞj2: ð54Þ

(a) (b)

FIG. 8. (a) Effect of K on graybody factor for scalar perturbation for various l values. (b) Effect of w on graybody factor for scalar
perturbation.

(a) (b)

FIG. 9. Effect of K in (a) and w in (b) on total absorption cross section σ vs QNM frequency ω for scalar perturbation. To find σ we
have added up to 10 modes from l ¼ 0 to l ¼ 10.
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The variation of σ with anisotropic matter field param-
eters is studied in Fig. 9 for scalar perturbations. A similar
behavior is observed for electromagnetic perturbations.
From the figure, three distinct regions can be identified.
The first region shows an initial increase in σ, attributed to
the rise in the transmission coefficient jTðωÞj with ω. In the
second region, σ exhibits oscillatory behavior, arising from
contributions of different l modes. Finally, in the power-
law fall-off region, σ decreases due to the saturation of
jTðωÞj to 1 at higher frequencies, as observed in Fig. 8.
Beyond this, as ω continues to increase, σ becomes
proportional to 1=ω2, regardless of the values of the
anisotropic parameters. The effect of the parameter K is
analyzed in 9(a), where splitting behavior is observed. The
strength of this splitting depends on the values of w, as
depicted in 9(b).

VII. RESULTS AND DISCUSSION

In this study, we explored the perturbations of black
holes surrounded by an anisotropic matter field, focusing
on a family of solutions that generalize the Reissner-
Nordström spacetime. These black holes possess addi-
tional characteristics, or “hair,” due to the negative radial
pressure of the surrounding anisotropic matter.
Astrophysical black holes are seldom isolated and often
coexist with matter or fields, it becomes essential to
understand how such matter or fields influence black
hole properties and observable phenomena. We inves-
tigated massless scalar and electromagnetic field pertur-
bations in the background of these black holes.
Employing the optimal order WKB method, we calculated
the quasinormal modes (QNMs), which describe the
characteristic oscillations of black holes in response to
perturbations. First we derive the effective potentials for
these perturbations, and then we assess how the aniso-
tropic matter field affects the oscillation frequencies
associated with QNMs. The error estimation confirms
the reliability of the computed QNM frequencies. For
completeness we also comment on gravitational pertur-
bations in the Appendix B.
Our findings reveal that the presence of an anisotropic

matter field leads to a splitting in the QNM frequencies
when compared to the Schwarzschild black hole
case. Specifically, for positive values of the anisotropy
parameter K, the real part of the QNM frequencies
decreases, whereas for negative values, it increases.
This splitting is consistent across different angular
momentum modes and becomes more pronounced for
smaller values of the anisotropy parameter w, indicating
that less anisotropic matter exerts a greater influence on
the QNMs.
We have also examined the critical orbits around the

black hole to investigate the connection between the
eikonal QNMs, the shadow radius of the black hole,
and the Lyapunov exponent, which characterizes

the instability timescale of photon sphere orbits. We
observe that the shadow radius increases with positive
anisotropy parameter K values and decreases with
negative values, mirroring the behavior of the real part
of the QNM frequencies. Similarly, the Lyapunov
exponent exhibits dependence on the anisotropy param-
eters, aligning with the imaginary part of the QNMs.
The correlation between shadow and QNM suggest
that the anisotropic matter field has a significant impact
on the observable features of black holes, such as their
shadows.
Additionally, we analyzed the scattering properties

and graybody factors resulting from the perturbations.
The anisotropic matter field alters the potential barrier
surrounding the black hole, influencing the transmission
and reflection coefficients of waves propagating in
this spacetime. Our results indicate that the graybody
factor increases with larger positive values of the
anisotropy parameter K, implying that the potential
barrier becomes more penetrable and allows more radi-
ation to escape to infinity. This effect is more pronounced
for lower values of w, which is consistent with the
trends observed in the QNM frequencies and effective
potentials.
Our results emphasize that increasing the value of the

anisotropy parameter w causes the black hole’s properties
to converge toward those of the Schwarzschild case.
This indicates that the influence of the anisotropic
matter field diminishes with higher w values, and the
black hole behaves more like an isolated Schwarzschild
black hole.
Considering that real astrophysical black holes are

often rotating and surrounded by matter fields, future
research could extend this analysis to rotating black holes
immersed in anisotropic matter. Additionally, exploring
the perturbations and quasinormal modes of wormhole
solutions with anisotropic matter fields could provide
further insights into distinguishing these exotic objects
from black holes.
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APPENDIX A: ERROR CALCULATION

In this appendix, we provide the error estimation in the
WKB approximation (Table III and Fig. 10).
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APPENDIX B: GRAVITATIONAL
PERTURBATION

In this appendix, we briefly present the details of the
gravitational perturbation. The perturbation and quasinor-
mal mode calculation of black hole solutions with non-
vanishing energy-momentum tensor have been studied in
the literature by neglecting the perturbations of the energy-
momentum tensor [54,71–73]. That is, instead of consid-
ering the full perturbation equations

δ

�
Rμν −

1

2
Rgμν

�
¼ κδTμν; ðB1Þ

only the reduced perturbation equations were considered,

δ

�
Rμν −

1

2
Rgμν

�
¼ 0: ðB2Þ

However, in this appendix, we present the full perturba-
tion of the Einstein equation, as neglecting the perturba-
tion of the energy-momentum tensor is not always
justified [61].
The gravitational perturbation of a spherically symmetric

black hole spacetime can be studied using the Regge-
Wheeler/Zerilli formalism [7–9]. Considering small per-
turbations to the background metric gð0Þμν in the region
outside the black hole,

gμν ¼ gð0Þμν þ εhμν; ðB3Þ
where the perturbation is represented by a symmetric tensor
hμν. In the linear order, the perturbed Ricci tensor, Ricci
scalar, and energy-momentum tensor are given by,

Rμν¼Rð0Þ
μν þεRð1Þ

μν ; R¼Rð0Þ þεRð1Þ; Tμν¼Tð0Þ
μν þεTð1Þ

μν ;

ðB4Þ
The linear-order perturbation correction for the Einstein
equation becomes,

Rð1Þ
μν −

1

2

h
gð0Þμν Rð1Þ þ hμνRð0Þ

i
¼ 8πTð1Þ

μν ; ðB5Þ

where the superscripts represent the order of perturbation.
In the Regge-Wheeler formalism, general spherically

symmetric tensorial perturbations hμν are split into odd
wave (axial, Regge-Wheeler or vector-type perturbations)
and even wave (polar, Zerilli or scalar-type perturbations)
with parities equal to ð−1Þlþ1 and ð−1Þl, respectively
[9,22,74]. In the linear order, the odd and even perturba-
tions decouple, and they can be treated separately. Due to
the principle of general covariance, the theory should be
covariant under infinitesimal coordinate transformations.
Thus, we can choose a specific gauge to simplify the
problem, such as the Regge-Wheeler gauge [7,75]. Due to
the static nature of the spacetime, the time dependence can
be decomposed as hμνðx; tÞ ¼ e−iωthμνðxÞ, where ω is the
quasinormal frequency of perturbations. Due to spherical
symmetry, one need not work with arbitrary m and there-
fore, without loss of generality, we can set m ¼ 0. The odd
wave perturbations in Regge-Wheeler canonical gauge are
given by [7],

ðhμνÞodd¼

0
BBBBB@

0 0 0 h0
0 0 0 h1
0 0 0 0

h0 h1 0 0

1
CCCCCAe−iωt sinθP0

lðcosθÞ ðB6Þ

In the canonical gauge, the odd perturbation of the energy-
momentum tensor is given by [22,76],

ðTð1Þ
μν Þodd ¼ e−iωt sin θ½Plðcos θÞAþ P0

lðcos θÞB� ðB7Þ

where

TABLE III. Error estimation in the WKB method for scalar and EM perturbations with n ¼ 0, M ¼ 1, Q ¼ 0,
K ¼ 0.1 and w ¼ 3=2. We have performed similar calculations in every case for both scalar and electromagnetic
perturbations.

WKB order Scalar QNM (l ¼ 0) Error EM QNM (l ¼ 1) Error

12 0.070246–0.302642 i 0.234244 1.709442þ 210.9719 i 2680.561
11 0.138488–0.153511 i 0.088657 19.03589þ 18.94548 i 105.4897
10 0.112319–0.130392 i 0.020183 1.853118–0.007509 i 13.36668
9 0.127818–0.114581 i 0.014954 0.234561–0.059325 i 0.805055
8 0.115497–0.100653 i 0.009595 0.245283–0.093083 i 0.017688
7 0.111850–0.103934 i 0.003016 0.246318–0.092692 i 0.000558
6 0.109512–0.101414 i 0.003911 0.246374–0.092840 i 0.000088
5 0.104414–0.106365 i 0.004626 0.246449–0.092811 i 0.000134
4 0.108763–0.110637 i 0.004874 0.246359–0.092572 i 0.001244
3 0.103659–0.116083 i 0.019581 0.244044–0.093450 i 0.006366
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A ¼

0
BBBBB@

0 0 0 0

0 0 0 0

0 0 0
t2lðlþ1Þ

2

0 0 sym 0

1
CCCCCA; B ¼

0
BBBBB@

0 0 0 t0
0 0 0 t1
0 0 0 t2 cot θ

sym sym sym 0

1
CCCCCA:

where h0, h1 are functions of the radial coordinate, and t0, t1, t2 are the radial functions that determine the perturbation of the
energy-momentum tensor.
Substituting (B6) and (B7) into (B5), we get three nontrivial equations. From the ðt; θÞ component we get,

h0½r2f00 þ 2rf0 þ 2f þ lðlþ 1Þ − 2� − irf½2ωh1 þ rωh01 − irh000�
2r2

¼ 8πt0: ðB8Þ

(a) (b)

(c) (d)

(e) (f)

FIG. 10. Error estimation in optimal order WKB approximation compared with the effect of anisotropic matter field. (a), (c), and (e)
correspond to scalar perturbations, while (b), (d), and (f) correspond to electromagnetic perturbations.
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From the ðr; θÞ component we get,

h1½fðr2f00 þ 2rf0 þ lðlþ 1Þ − 2Þ − r2ω2� þ ir2ωh00 − 2irωh0
2r2f

¼ 8πt1: ðB9Þ

From the ðθ;φÞ component we get,

iωh0
f

þ h1f0 þ fh01 ¼ −8πt2: ðB10Þ

There are three equations with two unknowns, h0 and h1, therefore not all these equations are independent, so we need to
consider only two equations. First, we solve (B10) for h0 in terms of h1 and t2,

h0 ¼
if
ω
½h1f0 þ fh01 þ 8πt2� ðB11Þ

and then substitute it into (B9) to get,

h001 ¼
1

r2f2
½h1ðfð4rf0 þl2þl−2Þ− r2ðf02þω2ÞÞ−rðfð3rf0h01þ16πrt1þ8πrt02−16πt2Þþ8πrt2f0−2f2h01Þ�: ðB12Þ

Redefining the function h1 as,

h1ðrÞ ¼
r
f
ψðrÞ ðB13Þ

and using the tortoise coordinates given in (15), the
Eq. (B12) takes the Schrödinger-like form,

d2ψðr⋆Þ
dr2⋆

þ ½ω2 − VRW�ψðr⋆Þ ¼ Sodd; ðB14Þ

where the source term SoddðrÞ is given by,

Sodd ¼
8πf
r2

½2fðt2 − rt1Þ − rðf0t2 þ t02Þ�: ðB15Þ

In the above expression, VRW is the Regge-Wheeler
potential for odd perturbations,

VRWðrÞ¼ fðrÞ
�
lðlþ1Þþ2½fðrÞ−1�

r2
þf0ðrÞ

r
þf00ðrÞ

�
:

ðB16Þ

For the metric function (6), it becomes,

VRWðrÞ ¼
�
1 −

2M
r

þQ2

r2
−

K
r2w

�

×

�
lðlþ 1Þ

r2
−
6M
r3

þ 6Q2

r4
−
2Kð1þ 2w2Þ

r2ðwþ1Þ

�
:

ðB17Þ

Equation (B14) describes the evolution of perturbations of
black holes surrounded by an anisotropic matter field,
wherein the perturbation has mass-energy much smaller
than that of the black hole. The solution of the evolution
equation with appropriate boundary conditions governs the
reaction of the black hole to the perturbation, manifesting
as the emission of gravitational radiation. For the vanishing
source term in (B14), the solutions ω are referred to as
quasinormal modes [22].
For completeness, we provide essential equations in even

wave perturbations in Regge-Wheeler canonical gauge
(also known as Zerilli gauge [9]). The perturbation of
the metric is decomposed as,

ðhμνÞEven ¼

0
BBBBB@

fh0 h1 0 0

h1
H2ðrÞ
f 0 0

0 0 r2KðrÞ 0

0 0 0 r2 sin2ðθÞKðrÞ

1
CCCCCA

×e−iωtPlðcosðθÞÞ ðB18Þ

The even perturbation of the energy-momentum tensor is
decomposed as,

Tð1Þ
Even ¼ e−iωt½Plðcos θÞCðrÞ þ P0

lðcos θÞDðrÞ� ðB19Þ

where
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CðrÞ ¼

0
BBBBB@

fT0ðrÞ T1ðrÞ 0 0

sym T2ðrÞ
f 0 0

0 0 −r2½lðlþ 1ÞT6ðrÞ − T3ðrÞ� 0

0 0 0 r2sin2θT3ðrÞ

1
CCCCCA;

DðrÞ ¼

0
BBBBB@

0 0 T4ðrÞ 0

0 0 T5ðrÞ 0

sym sym −r2 cot θT6ðrÞ 0

0 0 0 r2 sin θ cos θT6ðrÞ

1
CCCCCA:

where H0, H1, K and T0, T1, T2, T3, T4, T5, T6 are functions of the radial coordinate. Following [9], we obtain the Zerilli
potential

VevenðrÞ ¼
f

r2ð3rf0 þ 2ρÞ2 ½ð3rf
0 þ 2ρÞðrðrf00ðρ − 3rf0Þ − 3f0ðrf0 − 2ρÞÞ þ 4ρ2Þ

þ fð3rð3r3f002 − 2rρf00 þ 8ρf0 þ 6rf02 − r2ð3rf0 þ 2ρÞf000Þ þ 8ρ2Þ� ðB20Þ

where ρ is given by the relation ρ ¼ 1
2
ðl − 1Þðlþ 2Þ.
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R. D’Auria, and P. Fré (World Scientific, Sigapore, 2019),
10.1142/11643.

[11] R. H. Price and J. Pullin, Colliding black holes: The close
limit, Phys. Rev. Lett. 72, 3297 (1994).

[12] A. M. Abrahams and G. B. Cook, Collisions of boosted
black holes: Perturbation theory prediction of gravitational
radiation, Phys. Rev. D 50, R2364 (1994).

[13] A. M. Abrahams, S. L. Shapiro, and S. A. Teukolsky,
Calculation of gravitational wave forms from black hole
collisions and disk collapse: Applying perturbation theory
to numerical space-times, Phys. Rev. D 51, 4295 (1995).

[14] K. D. Kokkotas and B. G. Schmidt, Quasinormal modes of
stars and black holes, Living Rev. Relativity 2, 2 (1999).

[15] E. Berti, V. Cardoso, and A. O. Starinets, Quasinormal
modes of black holes and black branes, Classical Quantum
Gravity 26, 163001 (2009).

[16] R. A. Konoplya and A. Zhidenko, Quasinormal modes of
black holes: From astrophysics to string theory, Rev. Mod.
Phys. 83, 793 (2011).

[17] S. Chandrasekhar and S. L. Detweiler, The quasi-normal
modes of the Schwarzschild black hole, Proc. R. Soc. A
344, 441 (1975).

[18] C. V. Vishveshwara, Scattering of gravitational radiation by
a Schwarzschild black-hole, Nature (London) 227, 936
(1970).

[19] E. S. C. Ching, P. T. Leung, A. Maassen van den Brink,
W.M. Suen, S. S. Tong, and K. Young, Quasinormal-mode
expansion for waves in open systems, Rev. Mod. Phys. 70,
1545 (1998).

C., R., HEGDE, AJITH, PUNACHA, and KUMARA PHYS. REV. D 111, 064034 (2025)

064034-20

https://doi.org/10.1103/PhysRevLett.116.061102
https://doi.org/10.1103/PhysRevLett.116.061102
https://doi.org/10.1103/PhysRevLett.116.221101
https://doi.org/10.1103/PhysRevLett.116.221101
https://doi.org/10.1103/PhysRevLett.116.241103
https://doi.org/10.1103/PhysRevLett.116.241103
https://doi.org/10.3847/2041-8213/ab0e85
https://doi.org/10.3847/2041-8213/ab0ec7
https://doi.org/10.3847/2041-8213/ab0f43
https://doi.org/10.1103/PhysRev.108.1063
https://doi.org/10.1103/PhysRevD.1.3514
https://doi.org/10.1103/PhysRevD.1.3514
https://doi.org/10.1103/PhysRevLett.24.737
https://doi.org/10.1103/PhysRevLett.24.737
https://doi.org/10.1142/11643
https://doi.org/10.1103/PhysRevLett.72.3297
https://doi.org/10.1103/PhysRevD.50.R2364
https://doi.org/10.1103/PhysRevD.51.4295
https://doi.org/10.12942/lrr-1999-2
https://doi.org/10.1088/0264-9381/26/16/163001
https://doi.org/10.1088/0264-9381/26/16/163001
https://doi.org/10.1103/RevModPhys.83.793
https://doi.org/10.1103/RevModPhys.83.793
https://doi.org/10.1098/rspa.1975.0112
https://doi.org/10.1098/rspa.1975.0112
https://doi.org/10.1038/227936a0
https://doi.org/10.1038/227936a0
https://doi.org/10.1103/RevModPhys.70.1545
https://doi.org/10.1103/RevModPhys.70.1545


[20] H.-P. Nollert and R. H. Price, Quantifying excitations of
quasinormal mode systems, J. Math. Phys. (N.Y.) 40, 980
(1999).

[21] H.-P. Nollert, Topical review: Quasinormal modes: The
characteristic “sound” of black holes and neutron stars,
Classical Quantum Gravity 16, R159 (1999).

[22] A. Nagar and L. Rezzolla, Gauge-invariant non-spherical
metric perturbations of Schwarzschild black-hole space-
times, Classical Quantum Gravity 22, R167 (2005).

[23] V. Ferrari and L. Gualtieri, Quasi-normal modes and
gravitational wave astronomy, Gen. Relativ. Gravit. 40,
945 (2008).

[24] H. Stephani, D. Kramer, M. A. H. MacCallum, C.
Hoenselaers, and E. Herlt, Exact Solutions of Einstein’s
Field Equations, Cambridge Monographs on Mathematical
Physics (Cambridge Univeresity Press, Cambridge,
England, 2003), 10.1017/CBO9780511535185.

[25] M. S. R. Delgaty and K. Lake, Physical acceptability of
isolated, static, spherically symmetric, perfect fluid solu-
tions of Einstein’s equations, Comput. Phys. Commun. 115,
395 (1998).

[26] H.-C. Kim, B.-H. Lee, W. Lee, and Y. Lee, Rotating black
holes with an anisotropic matter field, Phys. Rev. D 101,
064067 (2020).

[27] I. Cho and H.-C. Kim, Simple black holes with anisotropic
fluid, Chin. Phys. C 43, 025101 (2019).

[28] J. Badía and E. F. Eiroa, Influence of an anisotropic matter
field on the shadow of a rotating black hole, Phys. Rev. D
102, 024066 (2020).

[29] C. L. Ahmed Rizwan, A. Naveena Kumara, K. Hegde, M. S.
Ali, and K. M. Ajith, Rotating black hole with an anisotropic
matter field as a particle accelerator, Classical Quantum
Gravity 38, 075030 (2021).

[30] B. Cuadros-Melgar, R. D. B. Fontana, and J. de Oliveira,
Superradiance and instabilities in black holes surrounded
by anisotropic fluids, Phys. Rev. D 104, 104039
(2021).

[31] B. Cuadros-Melgar, R. D. B. Fontana, and J. de Oliveira,
Late-time tails, entropy aspects, and stability of black
holes with anisotropic fluids, Eur. Phys. J. C 80, 848
(2020).

[32] S. Jeong, B.-H. Lee, H. Lee, and W. Lee, Homoclinic orbit
and the violation of the chaos bound around a black hole
with anisotropic matter fields, Phys. Rev. D 107, 104037
(2023).

[33] H.-C. Kim and Y. Lee, Spherically symmetric wormholes
with anisotropic matter, J. Cosmol. Astropart. Phys. 09
(2019) 001.

[34] G.W. Gibbons and S.W. Hawking, Action integrals and
partition functions in quantum gravity, Phys. Rev. D 15,
2752 (1977).

[35] S. W. Hawking and S. F. Ross, Duality between electric and
magnetic black holes, Phys. Rev. D 52, 5865 (1995).

[36] V. Kiselev, Quintessence and black holes, Classical Quan-
tum Gravity 20, 1187 (2003).

[37] C. Erices, L. Guajardo, and K. Lara, Reverse stealth
construction and its thermodynamic imprints, arXiv:2410
.13719.

[38] F. Zwicky, Die Rotverschiebung von extragalaktischen
Nebeln, Helv. Phys. Acta 6, 110 (1933).

[39] V. C. Rubin and W. K. Ford, Jr., Rotation of the andromeda
nebula from a spectroscopic survey of emission regions,
Astrophys. J. 159, 379 (1970).

[40] D.-C. Zou and Y. S. Myung, Scalar hairy black holes in
Einstein-Maxwell-conformally coupled scalar theory, Phys.
Lett. B 803, 135332 (2020).

[41] B.-H. Lee, W. Lee, and Y. S. Myung, Shadow cast by a
rotating black hole with anisotropic matter, Phys. Rev. D
103, 064026 (2021).

[42] S.-b. Chen and J.-l. Jing, Quasinormal modes of a black hole
surrounded by quintessence, Classical Quantum Gravity 22,
4651 (2005).

[43] V. Cardoso and J. P. S. Lemos, Quasinormal modes of
Schwarzschild anti-de Sitter black holes: Electromagnetic
and gravitational perturbations, Phys. Rev. D 64, 084017
(2001).

[44] S. Dey and S. Chakrabarti, A note on electromagnetic and
gravitational perturbations of the Bardeen de Sitter black
hole: Quasinormal modes and greybody factors, Eur. Phys.
J. C 79, 504 (2019).

[45] S. Chandrasekhar, The Mathematical Theory of Black Holes
(Oxford University Press, Inc, 1992).

[46] B. F. Schutz and C. M. Will, Black hole normal modes—A
semianalytic approach, Astrophys. J. Lett. 291, L33 (1985).

[47] S. Iyer and C. M. Will, Black hole normal modes: AWKB
approach. 1. Foundations and application of a higher order
WKB analysis of potential barrier scattering, Phys. Rev. D
35, 3621 (1987).

[48] R. A. Konoplya, Quasinormal behavior of the
D-dimensional Schwarzschild black hole and higher order
WKB approach, Phys. Rev. D 68, 024018 (2003).

[49] J. Matyjasek and M. Opala, Quasinormal modes of black
holes. The improved semianalytic approach, Phys. Rev. D
96, 024011 (2017).

[50] R. A. Konoplya, A. Zhidenko, and A. F. Zinhailo, Higher
order WKB formula for quasinormal modes and grey-body
factors: Recipes for quick and accurate calculations,
Classical Quantum Gravity 36, 155002 (2019).

[51] R. Tharanath, N. Varghese, and V. C. Kuriakose, Phase
transition, quasinormal modes and Hawking radiation of
Schwarzschild black hole in quintessence field, Mod. Phys.
Lett. A 29, 1450057 (2014).

[52] G. Guo, Massless scalar field quasi-normal frequencies of
Schwarzschild black hole in the quintessence background,
Eur. Phys. J. C 73, 2573 (2013).

[53] Y. Zhang, Y. X. Gui, and F. Li, Quasinormal modes of a
Schwarzschild black hole surrounded by quintessence:
Electromagnetic perturbations, Gen. Relativ. Gravit. 39,
1003 (2007).

[54] Y. Zhang and Y. X. Gui, Quasinormal modes of a Schwarzs-
child black hole surrounded by quintessence, Classical
Quantum Gravity 23, 6141 (2006).

[55] E.W. Leaver, An Analytic representation for the quasi
normal modes of Kerr black holes, Proc. R. Soc. A 402,
285 (1985).

[56] M. D. Ćirić, N. Konjik, and A. Samsarov, Noncommutative
scalar quasinormal modes of the Reissner–Nordström black
hole, Classical Quantum Gravity 35, 175005 (2018).

[57] M. Dimitrijević Ćirić, N. Konjik, and A. Samsarov,
Noncommutative scalar field in the nonextremal

PERTURBATIONS OF BLACK HOLES SURROUNDED BY … PHYS. REV. D 111, 064034 (2025)

064034-21

https://doi.org/10.1063/1.532698
https://doi.org/10.1063/1.532698
https://doi.org/10.1088/0264-9381/16/12/201
https://doi.org/10.1088/0264-9381/22/16/R01
https://doi.org/10.1007/s10714-007-0585-1
https://doi.org/10.1007/s10714-007-0585-1
https://doi.org/10.1017/CBO9780511535185
https://doi.org/10.1016/S0010-4655(98)00130-1
https://doi.org/10.1016/S0010-4655(98)00130-1
https://doi.org/10.1103/PhysRevD.101.064067
https://doi.org/10.1103/PhysRevD.101.064067
https://doi.org/10.1088/1674-1137/43/2/025101
https://doi.org/10.1103/PhysRevD.102.024066
https://doi.org/10.1103/PhysRevD.102.024066
https://doi.org/10.1088/1361-6382/abe2d9
https://doi.org/10.1088/1361-6382/abe2d9
https://doi.org/10.1103/PhysRevD.104.104039
https://doi.org/10.1103/PhysRevD.104.104039
https://doi.org/10.1140/epjc/s10052-020-8415-7
https://doi.org/10.1140/epjc/s10052-020-8415-7
https://doi.org/10.1103/PhysRevD.107.104037
https://doi.org/10.1103/PhysRevD.107.104037
https://doi.org/10.1088/1475-7516/2019/09/001
https://doi.org/10.1088/1475-7516/2019/09/001
https://doi.org/10.1103/PhysRevD.15.2752
https://doi.org/10.1103/PhysRevD.15.2752
https://doi.org/10.1103/PhysRevD.52.5865
https://doi.org/10.1088/0264-9381/20/6/310
https://doi.org/10.1088/0264-9381/20/6/310
https://arXiv.org/abs/2410.13719
https://arXiv.org/abs/2410.13719
https://doi.org/10.1007/s10714-008-0707-4
https://doi.org/10.1086/150317
https://doi.org/10.1016/j.physletb.2020.135332
https://doi.org/10.1016/j.physletb.2020.135332
https://doi.org/10.1103/PhysRevD.103.064026
https://doi.org/10.1103/PhysRevD.103.064026
https://doi.org/10.1088/0264-9381/22/21/011
https://doi.org/10.1088/0264-9381/22/21/011
https://doi.org/10.1103/PhysRevD.64.084017
https://doi.org/10.1103/PhysRevD.64.084017
https://doi.org/10.1140/epjc/s10052-019-7004-0
https://doi.org/10.1140/epjc/s10052-019-7004-0
https://doi.org/10.1086/184453
https://doi.org/10.1103/PhysRevD.35.3621
https://doi.org/10.1103/PhysRevD.35.3621
https://doi.org/10.1103/PhysRevD.68.024018
https://doi.org/10.1103/PhysRevD.96.024011
https://doi.org/10.1103/PhysRevD.96.024011
https://doi.org/10.1088/1361-6382/ab2e25
https://doi.org/10.1142/S0217732314500576
https://doi.org/10.1142/S0217732314500576
https://doi.org/10.1140/epjc/s10052-013-2573-9
https://doi.org/10.1007/s10714-007-0434-2
https://doi.org/10.1007/s10714-007-0434-2
https://doi.org/10.1088/0264-9381/23/22/004
https://doi.org/10.1088/0264-9381/23/22/004
https://doi.org/10.1098/rspa.1985.0119
https://doi.org/10.1098/rspa.1985.0119
https://doi.org/10.1088/1361-6382/aad201


Reissner-Nordström background: Quasinormal mode spec-
trum, Phys. Rev. D 101, 116009 (2020).

[58] N. Herceg, T. Jurić, A. Samsarov, and I. Smolić, Metric
perturbations in noncommutative gravity, J. High Energy
Phys. 06 (2024) 130.

[59] K. D. Kokkotas and B. F. Schutz, Black hole normal modes:
A WKB approach. 3. The Reissner-Nordstrom black hole,
Phys. Rev. D 37, 3378 (1988).

[60] E.W. Leaver, Quasinormal modes of Reissner-Nordstrom
black holes, Phys. Rev. D 41, 2986 (1990).

[61] M. S. Churilova, Black holes in Einstein-Aether theory:
Quasinormal modes and time-domain evolution, Phys. Rev.
D 102, 024076 (2020).

[62] V. Cardoso, A. S. Miranda, E. Berti, H. Witek, and V. T.
Zanchin, Geodesic stability, Lyapunov exponents and qua-
sinormal modes, Phys. Rev. D 79, 064016 (2009).

[63] J. L. Synge, The escape of photons from gravitationally
intense stars, Mon. Not. R. Astron. Soc. 131, 463 (1966).

[64] J. P. Luminet, Image of a spherical black hole with thin
accretion disk, Astron. Astrophys. 75, 228 (1979).

[65] I. Z. Stefanov, S. S. Yazadjiev, and G. G. Gyulchev, Con-
nection between black-hole quasinormal modes and lensing
in the strong deflection limit, Phys. Rev. Lett. 104, 251103
(2010).

[66] K. Jusufi, Quasinormal modes of black holes surrounded by
dark matter and their connection with the shadow radius,
Phys. Rev. D 101, 084055 (2020).

[67] A. N. Kumara, S. Punacha, and M. S. Ali, Lyapunov
exponents and phase structure of Lifshitz and hyperscaling

violating black holes, J. Cosmol. Astropart. Phys. 07 (2024)
061.

[68] R. A. Konoplya and A. F. Zinhailo, Grey-body factors
and Hawking radiation of black holes in 4D Einstein-
Gauss-Bonnet gravity, Phys. Lett. B 810, 135793
(2020).

[69] R. A. Konoplya, A. F. Zinhailo, and Z. Stuchlik, Quasinor-
mal modes and Hawking radiation of black holes in cubic
gravity, Phys. Rev. D 102, 044023 (2020).

[70] R. A. Konoplya, Quasinormal modes and grey-body fac-
tors of regular black holes with a scalar hair from the
effective field theory, J. Cosmol. Astropart. Phys. 07
(2023) 001.

[71] R. A. Konoplya and A. Zhidenko, Gravitational spectrum of
black holes in the Einstein-Aether theory, Phys. Lett. B 648,
236 (2007).

[72] C. Ding, Gravitational quasinormal modes of black holes in
Einstein-Aether theory, Nucl. Phys. B938, 736 (2019).

[73] Y. Yang, D. Liu, A. Övgün, Z.-W. Long, and Z. Xu, Probing
hairy black holes caused by gravitational decoupling using
quasinormal modes and greybody bounds, Phys. Rev. D
107, 064042 (2023).

[74] K. S. Thorne, Multipole expansions of gravitational radia-
tion, Rev. Mod. Phys. 52, 299 (1980).

[75] C. V. Vishveshwara, Stability of the Schwarzschild metric,
Phys. Rev. D 1, 2870 (1970).

[76] F. J. Zerilli, Perturbation analysis for gravitational and
electromagnetic radiation in a Reissner-Nordstroem geo-
metry, Phys. Rev. D 9, 860 (1974).

C., R., HEGDE, AJITH, PUNACHA, and KUMARA PHYS. REV. D 111, 064034 (2025)

064034-22

https://doi.org/10.1103/PhysRevD.101.116009
https://doi.org/10.1007/JHEP06(2024)130
https://doi.org/10.1007/JHEP06(2024)130
https://doi.org/10.1103/PhysRevD.37.3378
https://doi.org/10.1103/PhysRevD.41.2986
https://doi.org/10.1103/PhysRevD.102.024076
https://doi.org/10.1103/PhysRevD.102.024076
https://doi.org/10.1103/PhysRevD.79.064016
https://doi.org/10.1093/mnras/131.3.463
https://doi.org/10.1103/PhysRevLett.104.251103
https://doi.org/10.1103/PhysRevLett.104.251103
https://doi.org/10.1103/PhysRevD.101.084055
https://doi.org/10.1088/1475-7516/2024/07/061
https://doi.org/10.1088/1475-7516/2024/07/061
https://doi.org/10.1016/j.physletb.2020.135793
https://doi.org/10.1016/j.physletb.2020.135793
https://doi.org/10.1103/PhysRevD.102.044023
https://doi.org/10.1088/1475-7516/2023/07/001
https://doi.org/10.1088/1475-7516/2023/07/001
https://doi.org/10.1016/j.physletb.2007.03.018
https://doi.org/10.1016/j.physletb.2007.03.018
https://doi.org/10.1016/j.nuclphysb.2018.12.005
https://doi.org/10.1103/PhysRevD.107.064042
https://doi.org/10.1103/PhysRevD.107.064042
https://doi.org/10.1103/RevModPhys.52.299
https://doi.org/10.1103/PhysRevD.1.2870
https://doi.org/10.1103/PhysRevD.9.860

	Perturbations of black holes surrounded by anisotropic matter field
	I. INTRODUCTION
	II. BLACK HOLE SURROUNDED BY AN ANISOTROPIC MATTER FIELD
	III. BLACK HOLE PERTURBATION
	A. Scalar field perturbation
	B. Electromagnetic perturbation

	IV. QUASINORMAL MODES
	V. CRITICAL ORBITS AROUND BLACK HOLE AND THEIR CONNECTION TO QNMs
	A. Shadow radius and QNM
	B. Lyapunov exponent and QNM

	VI. SCATTERING AND GRAYBODY FACTORS
	VII. RESULTS AND DISCUSSION
	ACKNOWLEDGMENTS
	DATA AVAILABILITY
	APPENDIX A: ERROR CALCULATION
	APPENDIX B: GRAVITATIONAL PERTURBATION
	References


